
human-centred computer
architecture: redesigning the
mobile datastore & sharing

interface

By
Thomas Oliver Reitmaier

Dissertation submitted for the degree of
Doctor of Philosophy

in the Department of Computer Science
University of Cape Town

October 2018

abstract

�is dissertation develops a material perspective on Information & Communica-
tion Technologies and combines this perspective with a Research throughDesign
approach to interrogate current and develop new mobile sharing interfaces and
datastores. �rough this approach I open up a line of inquiry that connects a
material perspective of information with everyday sharing and communication
practices as well as with the mobile and cloud architectures that increasingly
mediate such practices. With this perspective, I uncover a shi�ing emphasis of
how data is stored on mobile devices and how this data is made available to apps
through sharing interfaces that prevent apps from obtaining a proper handle of
data to support fundamentally human acts of sharing such as gi�ing.
I take these insights to articulate a much wider research agenda to implicate,

beyond the sharing interface, the appmodel andmobile datastore, data exchange
protocols, and the Cloud. I formalise the approach I take to bring technically and
socially complex, multi-dimensional and changing ideas into correspondence
and to openly document this process.
I consider the history of the File abstraction and the fundamental grammars

of action this abstraction supports (e.g. move, copy, & delete) and the mediating
role this abstraction – and its graphical representation – plays in binding together
the concerns of system architects, programmers, and users. Finding inspiration
in the 30 year history of the �le, I look beyond the Desktop to contemporary
realms of computing on the mobile and in the Cloud to develop implications for
reinvigorated �le abstractions, representations, and grammars of actions. First
and foremost, these need to have a social perspective on �les.
To develop and hone such a social perspective, and challenge the assumption

that mobile phones are telephones – implying interaction at a distance – I give an
interwoven account of the theoretical and practical work I undertook to derive
and design a grammar of action – showing – tailored to co-present and co-located
interactions. By documenting the process of developing prototypes that explore
this design space, and returning to the material perspective I developed earlier, I
explore how the grammars of show and gi� are incongruent with the speci�c
ways in which information is passed through the mobile’s sharing interface.
�is insight led me to prototype a mobile datastore – My Stu� – and design

new �le abstractions that foreground the social nature of the stu� we store and
share on ourmobiles. I study how that stu� is handled and shared in the Cloud by
developing, documenting, and interrogating a cloud service to facilitate sharing,
and implement grammars of actions to support and better align with human
communication and sharing acts.
I conclude with an outlook on the powerful generative metaphor of casting

mobile media �les as digital possessions to support and develop human-centred
computer architecture that give people better awareness and control over the
stu� that matters to them.

II

publications

Some ideas, �gures, and tables of this dissertation have previously appeared in
the following publications:

Reitmaier, T., Benz, P., & Marsden, G. 2013. “Designing and�eorizing
Co-Located Interactions.” In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems: CHI ’13, 381–390. New York, NY, USA: ACM. doi:
10.1145/2470654.2470709

Robinson, S., Pearson, J., Reitmaier, T., Ahire, S., & Jones, M. 2018.
“Make Yourself at Phone: Reimagining Mobile Interaction Architectures
With Emergent Users.” In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems: CHI ’18. New York, NY: ACM. doi:
10.1145/3173574.3173981

Walton, M., N. J. Bidwell, A. Venter, T. Reitmaier. 2014. “Mobile Tech-
nologies and Society in South Africa: Towards Transdisciplinary Perspectives on
Mobile Social Media”, Panel Discussion at the South African Communications
Association 40th Annual Conference: SACOMM ’14, Potchefstroom, South
Africa, October 1

III

http://dx.doi.org/10.1145/2470654.2470709
http://dx.doi.org/10.1145/3173574.3173981

acknowledgments

I would like to thank the many people and organisations who have supported
me throughout this research.

�is dissertation would never have come together without the friendship,
support and insights from many others.

First and foremost I am deeply grateful to Edwin Blake, Richard Harper, and
Matt Jones, who have at di�erent times, and in di�erent places, given insights
and guidance that are intertwined throughout this dissertation. Without their
support I would have never got this far.

My friends and colleagues at the ICT4D Centre – particularly Anja, Shikoh,
Grace, Fiona, Tsabi, Alette, and Ntwa have helped both during this work and
beyond duringmuch needed lunch and co�ee breaks. �ank you all. I am equally
grateful to my tremendous colleagues at Swansea University: Jen, Simon, Doon,
and Stephen.

�e �nancial support of Microso� Research through their PhD Scholarship
programme and the University of Cape Town’s Computer Science Department
has funded this research throughout, and for this I am particularly grateful.

My partner Alexandra, my parents Jürgen and Angela, and my sister Claudia
have all accompanied me on this journey and have supported and encouraged
me in countless ways. I cannot begin to express the gratitude I have for them.

Finally, I thank the late Gary Marsden who provided the inspiration and
environment for this research to
ourish and for me to grow as a person and
researcher. I could not have asked for a better mentor and friend. It is to you,
Gary, to whom this dissertation is dedicated.

IV

contents
1 introduction 1

1.1 �e argument outlined 5

2 engineering to gift 8
2.1 Introduction 8
2.2 Motivation 8

2.2.1 Gi�ing as an interface question 8
2.2.2 Gi�ing as a practice 8

2.3 Formalising ‘to gi�’ 9
2.4 Does Windows Phone 8 Support Gi�ing? 10

2.4.1 �e objects one encounters on the phone 10
2.4.2 Sketching a Windows Phone App 10
2.4.3 Encountering Photos using the PhotoChooser-

Task 11
2.4.4 Encountering Photos using the share picker invocation

point 11
2.4.5 �e materiality of a photo on Windows Phone 8 14

2.5 Switching to Android 16
2.5.1 Prototyping a Gi�ing App on Android 18

2.6 Discussion & Re
ections 19
2.6.1 Changing architecture 21
2.6.2 Workarounds 21
2.6.3 In
uence of the Cloud 22
2.6.4 Files are insu�cient 23

2.7 Conclusion 24

3 research agenda 25
3.1 Introduction 25
3.2 Share: Solution or Problem? 25
3.3 What constitutes an answer? 26

3.3.1 Implicating mobile system architecture 26
3.3.2 Implicating the app model & data store 26
3.3.3 Implicating the cloud 26
3.3.4 Implicating data exchange protocols & access

points 27
3.4 A way forward 27

3.4.1 Research through Design Process 28
3.5 What is a File & what should it be? 29

3.5.1 Icons & Grammars of Action 29
3.6 Outlook – Moving to the mobile and networked computing

landscape of today 30

4 collecting & showing 31
4.1 Introduction 31
4.2 Sensitising 32

4.2.1 Understanding co-present practices 32
4.2.2 Understanding boundaries of people & time 33
4.2.3 Understanding identity 33
4.2.4 Understanding context 34
4.2.5 Understanding photographic (co-present) prac-

tices 34
4.3 Critiquing 35

4.3.1 Mobile Digital Stories 35

V

4.3.2 Mobiphos 36
4.3.3 Pass-them-around 36
4.3.4 Proxemic Interactions 36

4.4 Integrating & Generating 37
4.5 Exploring ‘Share Face2Face’ 38

4.5.1 Sketching Share Face2Face 39
4.6 Interrogating the sharing interface 40

4.6.1 Re-considering existing practices 41
4.7 Designing & implementing a co-present photo gallery 43

4.7.1 Mimicking the built-in gallery 44
4.7.2 Extending the built-in gallery app 46
4.7.3 Designing the co-present gallery 46
4.7.4 Implementing the co-present Gallery 48

4.8 Discussion & Outlook 48
4.9 Looking back & moving forward 50

5 interlude 51
5.1 Introduction 51
5.2 Examining the Windows Phone 8.1 File Manager 51
5.3 �e battle in the sandbox 55

5.3.1 Examining the share contract & �le picker 56
5.3.2 Discussion 57

5.4 Taking back control 57
5.4.1 �e MyStu� �le manager & datastore 57

5.5 Conclusion 58

6 interfacing with the cloud 59
6.1 Introduction 59

6.1.1 From Files to Possessions 60
6.1.2 Outlining a way forward 62

6.2 Contemporary Cloud Architectures 63
6.2.1 Demystifying the Cloud 63
6.2.2 Choosing a Cloud Service Model 65
6.2.3 Choosing a PaaS Cloud Vendor 66
6.2.4 Getting Started with the Azure Mobile Service

PaaS 67
6.2.5 Diving Deeper into Azure Mobile Services 70
6.2.6 Tying the components together 73

6.3 Architecting To Give 74
6.3.1 Accounts & Contacts 74
6.3.2 Uploading to, storing on, and downloading from Azure

Blog Storage 75
6.4 Extending �le abstractions to incorporate metadata 76
6.5 Implementing the expanded My Stu� prototype 78

6.5.1 Implementing expanded �le abstractions 80
6.6 Conclusion 80

7 relocating & rearchitecting 81
7.1 Introduction 81
7.2 Background 81
7.3 Findings 82

7.3.1 Latency 82
7.3.2 Intermediaries 83
7.3.3 Discussion 86

7.4 Rearchitecting 87
7.4.1 Ensuring protocol adherence 88
7.4.2 Dealing with Latency & Asynchronicity 90

7.5 Conclusion 91

VI

8 conclusion 93
8.1 Summary of Contributions 94
8.2 Limitations 95
8.3 Future Work 96

VII

1 introduction

�e bit changes everything. More than 20 years ago, Nicolas Negroponte (1996)
made this argument in his bestselling and widely in
uential book: Being Digital.
In it he popularised the human-computer interface that underpins ubiquitous
computing and characterised and promoted a utopian, interconnected world of
free-
owing information enabled by the bit – a number that can either be zero
or one. Being Digital can be seen as a synthesis of the many columns he wrote
forWired, a popular technology magazine, celebrating the bit and characterising
its di�erence from and relation to the atom1. Over the past 20 years technology
pundits have celebrated how digital technologies substitute bits for atoms, amove
that transforms physical objects into their digital equivalents and, consequently,
the society we live in into an information society2. Electronic health records,
online-only newspapers, on-demand movie rentals, MP3s, electronic voting,
etc are all evidence of this shi�. For instance, when I moved to South Africa, I
ripped all of my CDs in order to travel lightly. My music is now stored as bits
on my hard-drive – where it only occupies hard-drive space – whereas my CDs
are collecting dust in boxes in my parents’
at in Germany; bits have replaced
atoms.
“A bit”, according to Negroponte, “has no colour, size, or weight, and it can

travel at the speed of light. It is the smallest atomic element of the DNA of
information” (1996, 14). As atoms are the building blocks of the physical world,
following Negroponte (1996) we might reason that by substituting bits for atoms
means that the world we live in is, to some extent, becoming less physical. My
now digital music collection exempli�es this. However even Negroponte – a self
proclaimed technology optimist – concedes that “you cannot experience a bit”;
instead, that bit “must [�rst] be turned back into atoms for human beings to
enjoy it” (Negroponte 1995). �is happens at the human-computer interface
where bits and people meet. So while our experience of bits may no longer be
physical, they still arematerial.
Most contemporary accounts of technology development, however, tend to

de-emphasise the material properties of networks and devices as well as the
information that
ows through or are stored on them. Such accounts only pay
attention to their material properties when things break down, for instance when
in March 2013 a major �bre-optic cable, which links the African and European
continents, broke just o� the coast of Egypt (Mawson 2013) or when Amazon
Web Services su�ered a major outage in September of 2015 (Fiveash 2015). All
of a sudden the material properties of the Internet are foregrounded. Just as we
o�en forget that our devices and networks are material, we also tend to think of
our data as somehow ‘immaterial’. While my music and photo collections are
encoded as a sequence of bits, these bits are stored on my hard drive, where the
twomagnetic polarities are used to represent either 0 or 1. �is hard drive and the
information stored on it is, of course, physical. However, such ‘implementation
details’ are o�en glossed over in favour of more abstract – and therefore less
physical – accounts of data, especially when we adopt the ine�able metaphors
of the cloud computing paradigm. However much we might favour bits over
atoms or abstract away from the physical properties of data storage and transfer,
Negroponte original observation still holds – that for people to enjoy their digital
‘stu� ’, the bits that constitute that stu� must be turned back into atoms. Or put
another way, we experience our digital ‘stu� ’, however ‘immaterial’ it may seem
on the surface, as material.

1. see Negroponte (1993–1998)
2. on this point see Dourish & Mazmanian (2013).

1

2

For the Computer Scientist such a view might seem non-sensical. How can
something digital be material at the same time? However, when we walk across
campus and engage with disciplines outside of the science faculty, we encounter
commentators from the social sciences and the humanities for whom studying
the material reality of ‘stu� ’ – here referring to mostly physical stu� – is as much
about studying artefacts as it is about the social phenomena and practices they
intertwine with. Drawing heavily on the work of feminist theorist Karan Barad
(2003), Lucy Suchman brought this line of reasoning that transcends object-
subject dualisms to the attention of mainstream hci and cscw scholars. In her
e�orts “to rethink the intricate, and increasingly intimate, con�gurations of the
human and the machine” Lucy Suchman comes to the conclusion that “Human–
machine con�gurations matter [. . .] because cultural conceptions have material
e�ects” (2007, 1). �is quote deserves some unpacking, for it links together the
digital with the material and demonstrates the two related meanings of the words
‘matter/material’. In the �rst instance, something ‘matters’ or is ‘material’ when
it is of importance or consequence. In the second instance ‘material’ refers to
what we ostensibly call theWhat – or ‘stu� ’ – of physical forms. In more recent
work on the material nature of information, Dourish & Mazmanian argue that
a material perspective of information doesn’t position these two meanings in
opposition, for “that which carries ‘material consequences’ is always also physical
and that which is physical occasions ‘material consequences’ ” (2013, 96).
Over the past years Paul Dourish, Melissa Mazmanian and their colleagues

have published a collection of interrelated articles that investigate the materiali-
ties of information. �ese investigations include inquiries into the materiality
of internet routing (Dourish 2015b), the materiality of information representa-
tion (Dourish & Mazmanian 2013), a di�erential analysis of the Internet that
positions it as a feudal system (Dourish 2014), and �nally the materiality of
database technologies at a moment when these materialities are shi�ing (SQL vs
NoSQL) (Dourish 2014). Taken together these articles form a comprehensive
portfolio that underline the importance of amaterial perspective of information,
databases, networks, and protocols that challenges pervasive assumptions held
by technologists and sociocultural analysts, alike: from the former’s perspective
that technological objects are mostly seen as only that, namely technological
(Dourish 2015b, 274); and from the latter’s perspective that technological ar-
rangements while seen as already social are rarely scrutinised at the foundational
level of computational objects and processes that practically instantiate tech-
nology (Dourish 2015b, 294). Amaterial perspective thus opens up a fruitful
in-between space nestled between computer science on the one hand and the
social sciences and humanities on the other. Both provide an equally important
basis that lets amaterial perspective speak of speci�c technological arrangements
in all their technical detail, without regressing to technological determinism,
and at the same time appreciate the social reality and sociocultural consequences
of these arrangements.
One important contribution of this dissertation is to study from a material

perspective the arrangements, constraints, and consequences of contemporary
mobile architectures and cloud infrastructures. But we also see an important
contribution in recon�guring some of these arrangements with the goal of mak-
ing and exploring alternative possibilities that �nd their inspiration in and aim
to better support human communication practices as well as the values that
surround these practices that we have observed in our own or our colleagues’
research projects in South Africa. �ematerial perspective as advocated by Dour-
ish, Mazmanian and their colleagues is foundational to tackling and solidifying
the former contribution. But that perspective, as we argue next, also meshes
well with the Research through Design approach we adopt in this research to
tackle and solidify the later contribution. In a nutshell, Research through Design
(RtD) is “a research approach that employs methods and processes from design
practice as a legitimate form of enquiry” (Zimmerman et al. 2010, 310). Design

3

practices, of course, have a long tradition of emphasisingmaterial engagements.
�e design theorist Donald Schön (1983), for example, famously characterised
design as a re
ective conversation with materials, whereby a designer, in Schön’s
case an architect, approaches a design problem with the methods and tools of
their training while remaining responsive to the design situation’s and the design
material’s ‘talk back’.
At this point we think it timely to introduce the subject of our study – our

design material, if you will – the mobile smartphone. �e mobile phone is a
computational device that has brought about a sea-change in how many of us
live our lives, shaping some of our most common everyday experiences: how
we interact with each other through mobile media (e.g. Walton 2014; Farman
2012), mobile messaging (e.g. Taylor & Harper 2003; O’Hara et al. 2014),
and calls (Ling 2008). Its touch-screen interface, combined with a myriad of
built-in sensors, and its portable personal nature render the mobile distinct
from the desktop computer of the pc era. Finally, it is impossible to speak of
the mobile smartphone without also talking about the Internet, the Cloud, and
the various technologies, protocols, and architectures these are composed of. In
short, throughout this dissertation we �nd ourselves in conversation with and
listening to the ‘talk back’ human practices and the values that surround these
just as much as with the interfaces, architectures.
Dourish (2014), in a later article exempli�es this approach and looks at the

materialities of database systems. He too sees the connection between a material
perspective and design discourses and draws on Schön’s (1983) characterising of
design as a conversation with materials and contends that when speaking of ma-
terials of information, we are talking about those things that we, as members of
contemporary society, �nd ourselves in conversation with. Dourish (2014), how-
ever, misquotes Schön by characterising that conversation as ‘re
exive’ instead
of ‘re
ective’. Although unfortunate, this misquote presents an interesting point
of departure for us. Dourish & Mazmanian’s professional as well as everyday
orientations towards digitally rendered data are crucial to how they unpack and
situate their critical judgments of materials of information and their representa-
tions (2013). It exempli�es the bene�ts of extending the ‘re
ective conversation’
into one that is also re
exive. An orientation that I follow.
It is here, where there are overlaps and shared epistemic stances between a

material perspective, as articulated by Dourish & Mazmanian (2013), a Research
through Design approach that integrates theories from other disciplines (Zim-
merman et al. 2010, 316), and what Bardzell & Bardzell (2015) label Humanistic
hci, where Humanistic approaches and epistemologies are not only taken seri-
ously but also put in service of hci. In delineating a Humanistic hci, Bardzell
& Bardzell observe that it can be di�cult to distinguish between theories and
methods; for in practice, the relation between researcher, theory, methods, and
data is o�en blurred. Humanistic approaches in particular are necessarily and
deliberately not well formalised to leave room for ‘creative adapting’ that is cru-
cial to situating research (2015, 33). A consequence of this approach is that it is
not always possible to state upfront the theories and bodies of work I engaged
with, as is typical in a literature review, but rather to situate them throughout the
dissertation. In critically re
ecting on one of my past research projects (Reit-
maier 2011), I have found that these observations resonate with my experiences
of putting methods – in my case design methods – and the theories they mesh
with, and the re
exive conversations they depend on, into practice to design
a mobile digital storytelling system to suit the needs and functions of a rural
African community.
Perhaps at this point is a good time for us to followwhat Bardzell &Bardzell call

“counteracting the god trick” (Bardzell et al. 2015, 8) and introduce your narrator
as well as the places and people that have shaped this research. �is strategy takes
its cues from feminist philosophy and reframes objectivity, by positioning it as a
contingent accomplishment where claims can only be understood and accounted

4

for “in relation to [. . .] contingent positions, rather than as the voice of a hidden
all-knowing god” (Bardzell et al. 2015, 8). �is positionality inevitably always
introduces biases that are crucial to account for and acknowledge, rather than
counteract and ignore.
My perspectives as a person and as a computer scientist have been strongly

shaped by my decision to abandon studying Informatik (Computer Science) at
the rwth Aachen in Germany midway through the Diploma, a�er spending
a year studying abroad at the University of Cape Town (uct) in South Africa
through which I obtained an BSc Honours degree. Instead, I pursued a research
intensive Masters degree at uct. Studying and practicing Computer Science in
post-apartheid South Africa laid bare how little I knew of the physical, social
and cultural realities of people living in diverse communities and how poorly
the mobile phone �t into these realities. I bene�ted tremendously by studying
with and learning from great teachers: Gary Marsden and Nicola Bidwell and
the communities they worked with. By collaboratively designing, developing,
and evaluating a mobile digital storytelling system I learned to appreciate how
important anthropological and sociological theories and perspectives are for the
study of computer science – an insight I pursued by reading over 40 books on the
topic since completing my Masters. A brief research internship at the interdisci-
plinary Computer Mediated Living group at Microso� Research in Cambridge,
uk that combines the ideas and insights of sociologists, psychologists, engineers,
and designers further inspired me to bring my research in conversation with
disciplines and perspectives outside of computer science’s typical remit.
I draw on these readings and perspectives both critically and generatively

throughout this research, but they also present a bias that the astute reader
might notice, that I tend to gravitate towards and �nd inspiration in the work
of anthropologists and sociologists more generally and within hci towards
research that has socio-cultural inclination. My hope is that my undergraduate
studies of Computer Science and hci as well as my experience in designing
and programming mobile, web, and desktop applications provide a technical
foundation through which I can engage with such diverse commentators.
Next, I want to draw attention to the fact that this research was primarily

conducted at the Centre in ict for Development at the University of Cape Town
and is thus shaped by countless interactions I’ve had with colleagues and collab-
orators at and traveling through the Centre, which focuses on producing new
technologies for the developing world and studies how technologies are creatively
(re)appropriated by under-resourced communities. But it is also shaped by a
second research internship at the Human Experience and Design group under
the mentorship of Richard Harper and thus brings the above alternative perspec-
tives into conversation with those located at more dominate and resource-rich
centres of technological research and innovation.
Finally, I acknowledge that this thesis is also an expression of grief and honour

for my original supervisor, the late Gary Marsden and the thankfulness I have
for Edwin Blake (uct), Richard Harper (Microso� Research), and Matt Jones
(Swansea University) for taking me under their wings and helping me complete
this research. But this also means that I have been more reluctant to change or
challenge the ideas that Gary and I developed together. Perhaps, holding on
to them more than Gary would have liked. Without Gary’s hci expertise and
supervision, this research undertaking became by necessity more technical and
conceptual.
For these reasons, I at times depart from the Western academic convention of

writing in the third-person to emphasise and acknowledge to the reader, and
ultimately take responsibility for, the active role I played in conducting and
mediating this research. When I deem such emphasis less important, I transition
back to the more conventional third-person voice.
With your narrator introduced, let us return to thematerial/design approaches

we follow in our research. To distinguish Research through Design from design

5

practice, some have argued that RtD should include a ‘theoretical sca�olding’
(Zimmerman et al. 2010, 311). �e material perspective we summarised above,
not only shares a stance that emphasises material engagements, but can further
serve as such a ‘theoretical sca�olding’ that opens up a cross disciplinary, re
exive
conversation between computer science and the social sciences and humanities
that can appreciate and integrate the various disciplinary orientations towards
the mobile phone. Bardzell & Bardzell conclude their chapter on ‘Humanistic
hci and Methods’ with the following outlook (2015, 64):

We believe that it is this relationship between design and humanistic
ways of knowing that has formed a large part of the backbone of so-
called ‘third wave hci,’ with its emphases on aesthetics, experience,
sociotechnical systems, futuring, and social change. Underneath
it all is a desire – a need – to explore alternative ways of being, to
imagine their potentials both good and bad, and to build research
and design agendas that guide humans toward preferred ways of
being. One way to meet that need is to make – to design, to cra�,
to make art, to prototype – and then to engage such works with
critical rigor.

What Bardzell & Bardzell (2015) set into dialogue are two perspectives that
modern thought has kept separate: those of the cra�sman making things and
the theorist thinking them with ‘critical rigor’. �e di�erences in these perspec-
tive, as the Anthropologist Tim Ingold in his treatise onMaking argues, is not
that the former only makes and the later only thinks, but that the cra�sman
‘thinks through making’ and the theorist ‘makes through thinking’ (2013, 6). �is
is a theme that Frayling also identi�ed in his foundational essay on Research
in Art and Design (1993). Namely that research should not be considered the
exclusive provenance of professional scientists, what Frayling (1993) calls Re-
search with a big ‘R’. It should instead re-establish its historical connections with
art and *design*, what Frayling (1993) calls research with a small ‘r’. Research
through Design, Humanistic hci, and to an extent our material perspective
place an emphasis on the relationship between thinking (or theorising) and
making that corresponds more with the perspective of the cra�sman, who allow
their “knowledge to grow from the crucible of our practical and observational
engagements with the beings and things around us”; this is what Ingold (2013, 6)
calls practising the art of inquiry:

In the art of inquiry, the conduct of thought goes along with, and
continually answers to, the
uxes and
ows of the materials with
which we work. �ese materials think in us, as we think through
them. Here, every work is an experiment: not in the natural scien-
ti�c sense of testing a preconceived hypothesis, [. . .] , but in the
sense of prising an opening and following where it leads.

With these two quotes in mind and your narrator as well as the subject and
broad approach of our research undertaking introduced, we set o� to make,
study, and critique the contemporary mobile smartphone.

1.1 the argument outlined

Chapter 2 launches us straight into this research undertaking by asking a de-
ceptively simple question. Does Windows Phone 8 support gi�ing? – that is, can
we share an object in such a way that it is removed through the act of giving?
�e purpose of this question is to setup the contemporary smartphone as our
‘�eld site’ and to open up a line of inquiry that connects a material perspective of
information with the mobile and cloud architectures that increasingly mediate

6

age-old human practices such as gi�ing. OnWindows Phone 8, we explore the
mobile media objects that are commonly encountered on mobiles – photos and
videos – and the mechanisms, interfaces, and security principles through which
these objects are made available to users and app developers. We discover that
the Windows Phone 8 sharing interface does not support gi�ing, because the
mobile media accessed through it is only ever encountered, rendered, and shared
as a stream of data and not as an entity that can be removed, for instance as a �le.
We ask the same question of the Android Operating System (os) and uncover a
similar phenomenon, albeit as a more open platform we were able to engineer
a workaround and implement an app that explores the above gi�ing �ction.
However, this gi�ing �ction would only work with photos kept in public storage
(where the os has direct control) and not those hidden inside app sandboxes
(where the os relinquishes control). �e gi�ing �ction illustrates this battle in
the sandbox that forces apps to recreate �les in sandboxes where they fall outside
of the OS’s and the users direct control.
In Chapter 3 we explore this deeper issue and outline a wider research (through

design) agenda that rearticulates research objectives: to implicate and coordinate
mobile system architectures, datastores, the Cloud, and data exchange protocols
in the act of sharing with the goal of giving everyday people better awareness
and control over the stu� that matters to them and ultimately allow them to
express the nuances of how that stu� is shared. We consider foundational books
and early scholarship on the important role of the �le metaphor/abstraction in
system architecture and desktop interface design. �e foundational grammar of
action (e.g. move, copy, delete) and desktop metaphor of the pc, as more recent
scholarship argues has over the past 30 years bound together the concerns of
system architects and users alike, but its waning prevalence as a primary and
visible metaphor of mobile system design illustrates that a new grammar of
action and reinvigorated �le abstractions are needed rather than abandoning and
replacing these altogether. �e gi�ing �ction of the previous chapter exposed
precisely these shortcomings and demonstrates that we need a social view of
�les.
In Chapter 4 we interrogate current, and start to imagine what new grammars

of action, might look like by attending to the rich social practices that surround
and give meaning to the use of mobile phones. We synthesise diverse accounts
and theories of how people interact when co-present through our research
through design process and develop a simple prototype on Android os that
uses the built-in sharing interface to support showing photos. We consider
pressing resource constraints of communities in South Africa to motivate the
implementation of a more comprehensive photo gallery tailored for collecting
and subsequently presenting photos face-to-face.
In Chapter 5 we pause and re
ect over the prototypes we designed and devel-

oped in Chapters 2 & 4 and consider the major architectural changes introduced
by the convergedWindows 8.1 andWindows Phone 8.1 platforms that sees the �le
re-introduced as amajor component of theWindows Phone 8.1 platform, its data-
store, and its sharing interface. We analyse these early attempts to re-introduce
the �le and interrogate the resulting muddle when sharing is equated to copying.
Finally, we develop the �rst iteration of theMy Stu� datastore prototype to tidy
up the muddle and deepen our investigation.
In Chapter 6 we integrate our material perspective with a nascent �eld of

research that positions the stu� that people store and share on their personal
devices and in the Cloud as a form of digital possession. We conduct a critical
analysis of the possibilities and constraints of contemporary cloud architectures
to better understand how we can support notions of possession when �les are no
longer just created and stored on individual devices, but also shared with others
and travel through the Cloud. We extend theMy Stu� datastore to interface and
transact with a Cloud service that we developed using common technologies
and established design patterns. Finally, we develop new �le abstractions that

7

encompass and represent the social life a �le gains when it is shared. �is work
was conducted at Microso� Research in Cambridge, uk.
In Chapter 7 we relocate our research back to Cape Town only to discover

that theMy Stu� prototype and Cloud service did not work in the same way
it did in Cambridge. We deepen our investigation and extend research into
the materialities of information by interrogating how physical location a�ects
our use of the Cloud. We show how good infrastructure can mask problems
with computer architecture, and document how we re-architected theMy Stu�
datastore and Cloud service to better cope with the material realities of marginal
internet connectivity and �nd inspiration in local mobile media materialities
and sharing practices that articulate a need for mobile media to travel freely
between local media ecologies and the Cloud.

2 engineering to gift

2.1 introduction

�e work presented in this chapter is a fragment of a more complete study, or
rather it can be seen as an introduction to this study. It starts with a deceptively
simple question:

Does Windows Phone 8 support gi�ing?

�e purpose of asking this question lies not such much in its answer but
in its ability to present an engineering challenge that provokes re
ection and
discussion and ultimately opens up a line of inquiry that seeks to connect a
material perspective of information with everyday sharing and communication
practices as well as with the mobile and cloud architectures that increasingly
mediate such practices.

2.2 motivation

Before we discuss how we answer this questions and the implications it suggest,
we �rst motivate why we choose to ask this question speci�cally.

2.2.1 Gi�ing as an interface question

In his seminal work�e Language of New Media, Lev Manovich (2001) develops
a rigorous and widely in
uential theory of new media. In that book Manovich
introduces the database as the key form of cultural expression of the computer
age (Manovich 2001, 218). While we touch on databases later on in this chapter
and in depth in chapter 6, it is the second category/form that is verymuch unique
to new media that we focus on here: the interface.
Manovich (2001) explores the human-computer interface from amedia theory

perspective. Starting with early desktop interfaces of the 80s such as the Xerox
Star and the Apple Macintosh, Manovich retraces the history of the term human-
computer interface. Back then the interface turned on the use of �le and folder
metaphors arranged on a desktop, but it also included what Manovich calls
‘grammars of meaningful actions’ (2001, 69) that still pervade contemporary
desktop interfaces: copy, rename, delete, to name a few. In this chapter, we seek
to �rst explore the ‘grammars of meaningful actions’ in more detail and then
expand on them by engineering the grammar of ‘to gi�’. Our reason for doing so,
can be found in Manovich’s argument that the human-computer interface is now
better thought of as a human-computer-culture interface, because “we are no
longer interfacing to a computer but to culture encoded in digital form” (2001,
69-70). Following Manovich, we argue that contemporary mobile interfaces
concern themselves with the distribution of cultural objects and would thus
bene�t from being studied from a sociological, material cultural perspective.
Engineering ‘to gi�’ makes such a perspective relevant.

2.2.2 Gi�ing as a practice

Gi�ing is an age-old practice that is found the world over. Its continued relevance
shows that “everything is still not wholly categorised in terms of buying and
selling”, because some “things still have sentimental [. . .] value” (Mauss [1950]

8

9

2000, 65). A gi� might take the form of an object, but far from being innate
they are imbued with a force that somehow “causes its recipient to pay it back”
(Mauss [1950] 2000, 3), for instance when we feel obliged to return an invitation
or to reciprocate by buying the next round of drinks. It is in this sense that gi�s
transform an innate object into something that enhances intimacy and ultimately
binds people together. �eses bindings give gi�ing practices their prevalence and
continued importance, for they are constitutive of social relations. �is has lead
Marcel Mauss in his comparative essay on�e Gi� to characterise gi� exchanges
as a total social system. It can thus help explain other types of exchanges, even
those mediated by mobile phones. For instance, Taylor & Harper (2003) draw
parallels between gi� exchanges as articulated by Mauss ([1950] 2000) and how
young people create and exchange content on their mobile phones (at the time,
mostly text messages). �e salient property of text messages that allows them
to draw such parallels is that they have value, and “this value is connected with
the giver, the recipient and the context in which the exchange takes place, and
is embodied and retained in material form” (Taylor & Harper 2003, 268).
Kindberg et al. (2005b) extend that argument to people’s use of camera phone
photos for social and a�ective purposes.
I could go on to give many more examples or dive deeper into the sociology

of gi�ing, but at this point the evidence should be adequate to claim that the
question of whether Windows Phone 8 supports gi�ing is at the very least a
question that deserves to be posed. I worry too that further theoretical treatments
of gi�ing, risks losing sight of how people already understand and do gi�ing.
For this we don’t need to draw upon essay and manuscripts. We – our ordinary,
everyday selves – already know what gi�ing is all about: we understand its
signi�cance, its ritual, its obligations because gi�ing practices are carried out “in
those contexts in which we claim to be ‘at home’ ” (Ingold 2000, 330) and, in
fact, contribute to “our being at home in the world” (Ingold 2000, 333). It is this
re
exive, common-sense understanding of gi�ing that I want to emphasise and
carry forward as we translate and formalise what is meant when we talk about
gi�ing, especially in the context of mobile phones and mobile media.

2.3 formalising ‘to gift’

We should, however, begin our process of formalising gi�ing by recognising that
it is not possible to formalise gi�ing and all that it entails, for when we speak
about gi�ing we are also implying all those many things that abhor speci�cation:
its intentionality, mindfulness, and generosity to name just a few. One approach
of moving forward is to set aside for a moment all those things that we might
call the social context of gi� exchanges (we will return to those later) and focus
instead on the mechanics of the exchange. In which case, we arrive at the
following ostensible formalisation of gi�ing:

To gi� an object, the giver �rst presents and then gives (transfers)
the object to the recipient.

But such a formalisation does not quite share the ‘logical form’, to borrow a
phrase fromWittgenstein, of our everyday understanding of gi�ing. For instance
this formalisation would allow me to gi� the reader his or her watch, an object
that was never mine to begin with and therefore not mine to gi�. Likewise, the
formalisation doesn’t quite capture what the recipient can do with the gi� a�er
they have received it. What makes the gi�ed object di�erent from the one which
has only been borrowed? To answer to these concerns and recover at least some
of the social context of gi�ing that we set aside earlier, we should label gi�s not
as objects, but as possessions.

To gi� a possession, the giver �rst presents it and then gives (trans-
fers) the possession to the recipient.

10

�is more nuanced formalisation would not enable me to gi� the reader
his or her watch, but would still allow me to gi� a photo that I took, or a box
of chocolates that I bought. In later chapters we will unpack the concept of
possession and how it relates to the digital content that pervades our lives and
that is increasingly also becoming the ‘stu� ’ of sociality. At this early stage we
drill down into the objective reality of gi�ing as a transfer of objects, keeping in
mind that at this scale we could never fully account for its social and cultural
reality. Nevertheless it feels like a truism to say that in order to gi� something,
you must �rst encounter that thing as an object. It is in this sense that we see
the relation between the terms possession and object, at least in the context of
gi�ing.
With this formalisation provisionally in place, we next turn to the Windows

Phone 8 platform.

2.4 does windows phone 8 support gifting?

We can speak of mobile message and media sharing practices as a form of gi�
giving, because the value of such practices “is embodied and retained in material
form” (Taylor & Harper 2003, 268). �ey thus invite a material perspective.
Studies of the material realities of the digital are, as Dourish reminds us, best
achieved comparatively (Dourish 2015a) and at times when the very materiali-
ties of a technology are in
ux (Dourish 2014). Despite our previous experience
developing Android Applications1 we deliberately choose to explore the Win-
dows Phone 8 platform to render the mobile strange2 again and provide such a
comparative perspective. As a comparative study, we will also consider our obser-
vations in relation to more popular mobile platforms such as Android. Although
not commercially successful with Windows Phone 8, Microso� developed an
Operating System (os) that stands as a signi�cant point of departure from every
other mobile os on the market: it focuses on the user’s content and not app
chrome (Whitechapel 2013, 3) and provides a fresh approach (Chimero 2013).
�e Metro design language, which was �rst introduced with Windows Phone 7,
has been expanded and, with the Windows 8 operating system, an attempt has
been made to unify it across desktop and mobile experiences. �is has further
interesting implications for the materialities of information that underwrite and
are underwritten by this design language. It is these that we want to unpack and
that motivate our choice of studying the Windows Phone platform.

2.4.1 �e objects one encounters on the phone

One type of object that we encounter o�en on the mobile is the photo. It is
an object that users can create at a push of a button. But it is also an object
that is both deeply personal and social. We leverage photos to communicate
(Kindberg et al. 2005a), tell stories (Reitmaier et al. 2011), and produce and
convey identity (Van House 2009) and remember (Dijck 2008).

2.4.2 Sketching a Windows Phone App

On the mobile, there are four ways through which apps can access photos stored
on the device:

1) By using the PhotoChooserTask api an app can acquire a single photo from
the user.

1. see for instance, Reitmaier et al. (2012), Bidwell et al. (2014) & (2014)
2. on this point see Bell et al. (2005).

11

(a) Main screen. (b) User selects photo.

(c) Display selected
photo.

(d) User selects
contact.

Figure 1: Gi�ing Screen Flow using the PhotoChooserTask.

2) By registering for the Photos Extra Share extension in an app’s manifest, that
app can become a ‘share target’ and will be listed alongside built-in apps such as
email or messaging in the wp8 share picker.

3) By using the MediaLibrary api an app can access all of the user’s photo albums
and photos at once.

4) By using the CameraCaputerTask or PhotoCamera api an app can prompt
the user to take a photo or build photo taking functionality straight into the app.

�e �rst two options are by far the most common and provide a standard way
for users to select a photo to gi�. In �gs. 1, 2 we have sketched out a screen
ow
for choosing and sharing a photo, respectively.

2.4.3 Encountering Photos using the PhotoChooserTask

Westart with implementing the �rst three steps of the screen
owoutlined in �g. 1.
�is is a straightforward process that involves creating an app with a single ui
page: MainPage. �is page contains a title TextBlock, an Image, and a Button.
In the code-behind of that ui page we initialise the PhotoChooserTask, set
the button to launch the PhotoChooserTask, and process the result of the
PhotoChooserTask: creating a BitmapImage from the chosen photo and then
displaying that image (see lst. 2.1).

2.4.4 Encountering Photos using the share picker invocation point

At this point we can also expand our app to provide the user with a second
invocation point – the share picker (Whitechapel 2013, 661) – as outlined in

12

(a) User browses
gallery.

(b) User ‘shares’ photo. (c) User chooses gi�;

ow continues in �g. 1c

Figure 2: Gi�ing Screen Flow using the Photos Extra Share extension.

Listing 2.1�emain UI page’s code-behind �le: ‘MainPage.xaml.cs‘
public partial class MainPage : PhoneApplicationPage

{
PhotoChooserTask photoChooser;

public MainPage()

{
InitializeComponent();

photoChooser = new PhotoChooserTask();

photoChooser.Completed += photoChooser_Completed;

}

private void photoChooserButton_Click(object sender, RoutedEventArgs e)

{
photoChooser.Show();

}

void photoChooser_Completed(object sender, PhotoResult e)

{
if (e.TaskResult != TaskResult.OK)

return;

var image = new BitmapImage();

image.SetSource(e.ChosenPhoto);

chosenPhoto.Source = image;

}
}

13

�g. 2. �is is done in a two-step process. First we need to register our gi�ing
app to be invoked from the share picker. �is is done declaratively in the app’s
WMAppManifest.xml �le using the Photo Extra Share extension point (see
lst. 2.2).

Listing 2.2 Registering for the share picker invocation point in the app manifest.
<Extensions>

<Extension

ExtensionName="Photos_Extra_Share"

ConsumerID="{5B04B775-356B-4AA0-AAF8-6491FFEA5632}"
TaskID="_default" />

</Extensions>

When the app is launched through the share picker invocation point the
Operating System passes a FileId parameter to the app as it is launched. By
overriding the OnNavigatedTo(NavigationEventArgs e)method, the app
can subsequently read out and act on this parameter, as lst. 2.3 demonstrates.

Listing 2.3 Extending the app to display a ’shared’ photo.
public partial class MainPage : PhoneApplicationPage

{
// ...

protected override void OnNavigatedTo(NavigationEventArgs e)

{
string fileId;

if (NavigationContext.QueryString.TryGetValue("FileId", out fileId))

{
using (MediaLibrary mediaLibrary = new MediaLibrary())

{
Picture sharedPicture

= mediaLibrary.GetPictureFromToken(fileId);

var image = new BitmapImage();

image.SetSource(sharedPicture.GetImage());

chosenPhoto.Source = sharedBitmapImage;

}
}

}
}

Here we �rst try and extract the FileId parameter from the Navitgation-
EventArgs. If successful it means that our app has launched from the share
picker invocation point, which in turnmeans that the user wants to share a photo
with/through the gi�ing app. We handle the FileId as a string variable that
stores a globally unique id, which might look similar to 66707067-c50d-475e-
b465-704479c71a7a. Next we make use of the MediaLibrary api to ‘get’ the
Picture that is associated with that FileId token. We then create a BitmapImage
from the Picture and can then �nally display it as our chosen photo.
In sec. 2.4.1 we illustrated how photos are typical objects that users create,

consume, and encounter on their mobile devices. Before we continue developing
our gi�ing app, we pause to unpack how we speci�cally encounter photos – what
are their materialities? – in our gi�ing app thus far.

14

2.4.5 �e materiality of a photo on Windows Phone 8

In our gi�ing app, we encounter ‘photos’ in di�erent ways. Once as a PhotoRe-
sult returned by a PhotoChooserTask and once as a FileId extracted from
the NavigationEventArgs passed into the OnNavigatedTo method when
our app is launched from the share picker invocation point. But as the astute
reader will surely notice, neither one of these is what we would commonly re-
fer to as a photo. So lets inspect them closer. Of the two ‘photos’, the FileId
parameter is surely the least photo-like; we will tackle it last, and begin instead
with the PhotoResult.
�e PhotoResult (MSDN 2016a) class only has two properties that are

unique to that class3:

• ChosenPhoto – Gets the stream containing the data for the photo.
• OriginalFilename - Gets the �le name of the photo.

In our app, we used the ChosenPhoto property to �rst create and then display
a bitmap of the photo’s data. It would, however, be impossible to gi� such a
ChosenPhoto for we only encounter it as a “stream containing the data for the
photo” (MSDN 2016a). �e best we can do is to display it, or perhaps, save a
copy of it.
Looking at the OriginalFilename property, which contains the full path to

the chosen photo, it appears that we might be able to encounter the photo as
an object that could be gi�ed: an object that can be removed once it has been
transferred and successfully received by the recipient and the act of giving is
complete. But �rst we’d need to get access to the �le that is stored at the path of
the OriginalFilename property, such as:
C:\Data\Users\Public\Pictures\Camera Roll\WP 20160308 001.jpg

OnWindows this is done using the Windows.Storage api. But onWindows
Phone this approach leads up a blind alley. As Whitechapel explains:

In Windows Phone 8, the only portions of the Windows.Storage
namespace that are supported are those with which developers can
manage �les and directories in their local storage folder and read
�les from their app package. Windows Phone 8 does not support
notions of roaming or temporary data that are present in Windows,
nor does it provide access to user content such as photos or music
as an IStorageFolder. —Whitechapel (2013, 402).

As we are hindered in our quest to encounter, what we might ostensibly call,
a ‘gi�able photo’ using a returned PhotoResult, we next turn to the FileId
parameter of our second approach. In lst. 2.3, we can see that it is only a�er
we make use of the MediaLibrary api that we can transform the FileId into
something that is at least more photo-like: a Picture. A Picture exposes a
number of interesting properties (MSDN 2016b):

• Name – Gets the name of the Picture,
• Date – Gets the picture’s date,
• Height – Gets the picture’s height,
• Width – Gets the picture’s width,
• Album – Gets the picture album that contains the picture.

In addition it exposes two public methods that are unique4 to the Picture
class:

3. by this we mean that they aren’t inherited from superclasses.
4. Methods that aren’t inherited from abstract super classes.

15

• GetImage() – Returns the stream that contains the image data,
• GetThumbnail() – Returns the stream that contains the picture’s thumbnail
image data.

In our app we used this �rst method to display the photo, but we again �nd
ourselves in the same blind ally we got stuck in earlier, as we can’t gi� that which
we only encounter as a stream. If we turn our attention to the �ve properties of
the Picture class, we can quickly tell that the �rst four won’t help us either, as
they are simple, descriptive objects. �e Album property, on the other hand, is
more interesting. It is represented by the PictureAlbum class (MSDN 2016c)
and has the following properties unique to that class:

• Albums – Gets the collection of picture albums that are contained within the
picture album (that is, picture albums that are children of the picture album),

• Name – Gets the name of the PictureAlbum,
• Parent – Gets the parent picture album,
• Pictures – Gets the collection of pictures in this picture album.

Looking at these members, we can see how a PictureAlbum can contain any
number of further, nested picture albums and subsequently each PictureAlbum
has a parent PictureAlbum all the way up to the root picture album that is
called ‘Pictures’ and which contains all the albums we also see in the built-in
Gallery app: Camera Roll, Saved Pictures, Sample Pictures, and Screenshots. A
PictureAlbum can also contain any number of pictures. �us we can conclude
that picture albums and the pictures and albums they contain are implemented
in similar ways to a nested hierarchy of folders (albums) and �les (pictures). To
be sure, if we remove the sd card from aWindows Phone 8 device and read it
from the computer, we can see the same hierarchy enfolding from the ‘Pictures’
folder: the root picture album, we mentioned earlier. And the pictures contained
within those folders are regular .jpg �les.
Exploring the Picture, PictureAlbum, and PhotoResult classes helped

us to shed light on some of the material properties of photos and how they are
encountered on Windows Phone 8. However when it comes to gi�ing, the �rst
three of the four approaches we outlined in sec. 2.4.2 lead up a blind alley, where
we only ever encounter a photo as a stream of data and not as an object that can
be gi�ed. Strictly speaking the fourth approach, using the PhotoCamera class,
allows us to save a newly captured photo in the app’s sandboxed storage. Lst. 2.4
illustrates how this is achieved.

Listing 2.4 Saving a captured image in a local storage sandbox.
private void photoCamera_CaptureImageAvailable(object sender,

ContentReadyEventArgs e)

{
IsolatedStorageFile isoStore =

IsolatedStorageFile.GetUserStoreForApplication();

string filename = "WP_" + DateTime.Now.Ticks.ToString() + ".jpg";

using (IsolatedStorageFileStream fileStream =

isoStore.OpenFile(filename, FileMode.CreateNew))

{
e.ImageStream.CopyTo(fileStream, 1024);

fileStream.Close();

}
}

16

Listing 2.5Deleting the previously captured image.

isoStore.DeleteFile(filename);

Within this storage sandbox, it would then be possible to delete the photo
using the api call shown in lst. 2.5.
While we have �nally discovered a scenario through which we would be able

to engineer ‘to gi�’ on wp8, we must concede that such a scenario, of gi�ing a
just taken photo, is hardly compelling. We thus switched to Android, to explore
if we might encounter photos in a ‘gi�able form’ on that platform. �is choice
was driven by the popularity of the Android platform in South Africa, and by
the fact that I am deeply familiar with the platform. However, we also note that
Apple’s iPhone is prohibitively expensive in South Africa5 so a limitation of this
work is that we were not able to experiment with the iOS platform.

2.5 switching to android

At the time, the most recent version of Android was 4.4 (KitKat). Lst. 2.6 shows
how we can prompt the user to select a photo from the phone’s datastore on
Android.

Listing 2.6 Prompting user to select a photo from the gallery on Android.
// set action to open an ’openable’ document

Intent intent = new Intent(Intent.ACTION_OPEN_DOCUMENT);

intent.addCategory(Intent.CATEGORY_OPENABLE);

// of type image

intent.setType("image/*");

// execute action

startActivityForResult(intent, PROMPT_FOR_PHOTO_REQUEST);

Similar to lst. 2.1 on wp8 the Android app then needs to wait for and then
process the results of this request. Lst. 2.7 shows how this is achieved.
It is again worth noting the similarities between the wp8 and Android plat-

forms. On Android the selected photo is returned to the app by a document
provider in the form of a Uri, which might look like this:
content://com.android.providers.media.documents/document/image:29

And just like on wp8, we can read the Uri into a Bitmap which we can then
display in a ui ImageView element. But unlike wp8 we can – in certain instances
– also tease out the �le path from the selected photo’s Uri. How this teasing can
be done is the topic of two popular StackOver
ow6 questions (mikegr 2013;
Álvaro 2016). For both questions the most helpful answer was provided by
Paul Burke (2013), the author of the open source ‘aFileChooser’ library, which
lets users select �les on external storage. �e solution that Burke proposes7 is
essentially a long list of if-then-else clauses that check, for instance if the Uri
was returned by a DocumentProvider in which case it needs to be checked if the
document represented by the Uri is stored on the phone’s internal storage or on
an external memory card, if it was downloaded and delivered by the Download-
sProvider, or if it was returned by the Gallery and its MediaProvider, or

5. �e entry level iPhone 5s costs approximately $992 compared to $649 in the USA.
6. StackOver
ow is an online community of almost 5 million programmers that help each

other by asking and answering questions
7. this solution can be viewed at Burke (2013)

17

Listing 2.7Handing the results of the photo prompt request.
@Override

protected void onActivityResult(int requestCode, int resultCode, Intent data) {
super.onActivityResult(requestCode, resultCode, data);

if (requestCode == PROMPT_FOR_PHOTO_REQUEST && resultCode == RESULT_OK

&& data != null && data.getData() != null) {

Uri photoUri = data.getData();

try {
Bitmap bitmap = MediaStore.Images.Media.getBitmap(getContentResolver(),

photoUri);

ImageView imageView = (ImageView) findViewById(R.id.imageView);

imageView.setImageBitmap(bitmap);

} catch (IOException e) {
e.printStackTrace();

}
}

}

perhaps the phone is running an older version of Android that doesn’t support
the DocumentProvidermodel in which case we fall back on the MediaStore
or see if the Uri adheres to a �le scheme. In each of these cases the �le path
is obtained in di�erent ways. For instance in the case of the MediaProvider
we �rst look at the last segment of the Uri: image:29. It can be broken down
into two components: the document’s type (image) and id (29). Ultimately
we want to query the MediaStore, which is done using a ContentResolver,
using the document id. As we are dealing with an image type, and not say a
video or audio type, we set the Uri of query to the one stored in the Medi-
aStore.Images.Media.EXTERNAL CONTENT URI variable. We then set the
selection to " id=?" and the arguments of that selection to the document id (29)
we obtained earlier. Finally we set the projection of the query to the " data"

column, as the path is the only part of the query we are interested in. We can
then query the database and return the string stored at the " data" column, as it
contains the �le path of the image. But before we can read from the �le or delete
it, we need to request that the Android os grant two additional permissions to
our app that we declare in the app’s manifest �le (see lst. 2.8).

Listing 2.8 Requesting permission to access storage.
<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

With all this in place, we can now �nally access the �le path of the photo
/storage/emulated/0/DCIM/Camera/IMG 20141106 082517.jpg to
read from, write to, as well as delete the �le stored at that location. With this
critical aspect of the app implemented we proceeded to implement a full gi�ing
app prototype and accompanying web service.

18

(a) User selects
photo and recipient,
writes a message, and
sends the gi�.

(b) Gi� is uploaded
to server and
noti�cation is sent to
recipient.

(c) Photo is deleted
and status updated
once recipient
accepts the gi�.

Figure 3: Sending a gi� on the Android App.

2.5.1 Prototyping a Gi�ing App on Android

We started by creating a simple web-service using node.js8, an event driven
JavaScript runtime designed to build scalable network applications, and Mon-
goDB9, an open source document database. We used standard components to
create a simple user account model and standard approaches to provide regis-
tration and access control. On the client side, upon launching the app users
are prompted to register using their name, phone number, and password. �e
phone number and password tuple are used to login on the server side. If that
tuple matches server records, the server returns an access token that is used to
authenticate further requests. Fig. 5 outlines this interplay during registration
between client app and api server. Later on we expanded the login method to
further include the client app’s push message token. �is token is used by the api
server to send push message to the client app using the Google CloudMessaging
Platform10, for instance to alert users that they have received a gi�.
Once registered and logged in, a user can gi� a photo by �rst selecting a

photo11, and then selecting a recipient, either by selecting someone from the
phone’s address book or by manually typing in the recipients phone number.
Finally users can compose an optional message to accompany their gi� before
‘sending’ it o�. Fig. 3a shows the ui that facilitates these steps. Once the send
button is pressed the client app makes a server side request to ‘create’ a gi�. �at
request contains the recipient’s phone number and the access token that was
returned by the server upon successful login. �e server �rst checks if the request
is authenticated and the recipient has an account. If these criteria are satis�ed,
the server creates a record of that request by storing giver and recipient phone
numbers and assigning the request an id. �is id is returned to the client app.
�e client app makes a second request which contains the id and access token
and also uploads the photo’s contents. On the server side, the photo is stored
and a push message is sent to the recipient’s app, which contains the gi� id and
giver phone number, and the optional message. A record of this gi� is stored by
the client app in a list of ‘sent’ gi�s (see Fig. 3b), which now shows this latest gi�
as uploaded but still pending. Fig. 5 shows how the api server mediates between
the client apps of giver and receiver.

8. http://nodejs.org
9. http://mongodb.org
10. https://developers.google.com/cloud-messaging/gcm
11. �is can be done from within the gi�ing app or by ‘sharing’ a photo with the gi�ing app, for

instance from the phone’s gallery

https://developers.google.com/cloud-messaging/gcm

19

(a) User is noti�ed of
gi�

(b) Upon clicking the
noti�cation, user is
prompted to accept the
gi�

(c) Gi� is downloaded,
saved, and displayed

Figure 4: Receiving and accepting a gi� on the Android App

Upon receipt of the pushmessage, the client app of the gi�’s recipient processes
the message and using Android’s noti�cation framework alerts the user that
they have just received a gi�. �e app also stores and displays a record of that
gi� in a list of received gi�s see 4a. Upon clicking on that record or on the
noti�cation in the noti�cation drawer, the user is asked if they accept the gi�
(see Fig. 4b). Should the user accept, the client app makes a request to the api
server containing the gi� id and the recipient’s access token. In the response the
server ‘streams’ the �le’s content, which is stored and displayed by the client app
(see Fig. 4c). �e interplay between client app and server api while ‘receiving’ a
gi� is outlined in Fig. 5c.
�e �le, however, now exists in three places: once on the giver’s phone; once

on the server of the gi�ing api; and once on the recipients phone. �us a bit of
housekeeping is still required to �rstly remove the copy that was created on the
server to facilitate the transfer and �nally remove the original �le on the giver’s
phone. Only then can the transfer of the gi� be regarded as complete. So upon
successfully downloading the photo, the client app makes one last request to
the api server to indicate that they have ‘accepted’ (or received) the gi�. �is
request again contains the gi� id as well as the recipient’s access token. �e server
responds by deleting its copy of the photo and sending a push message to the
giver, which contains the gi� id and a status that has been marked as accepted.
On the giver’s side the client app processes this message by deleting the original
�le and updating its records to show that the photo has been successfully gi�ed
to the recipient (see �g. 3). �is housekeeping phase between the respective
client apps and the mediating api server is illustrated in �g. 5d.

2.6 discussion & reflections

We started this chapter with a deceptively simple question:

Does Windows Phone 8 support gi�ing?

While the answer to that question is no, the purpose of asking this question
was precisely to provoke re
ection and discussion. It is this discussion that we
pick up in this section.

20

(a) Authenticating users.
\

(b) Sending a gi�.
\

(c) Receiving a gi�.
\

(d) Deleting transient copy and the original �le.
\

Figure 5: Sequence diagram of the gi�ing exchange protocol

21

2.6.1 Changing architecture

�e computing architecture of contemporary mobile phones, such as those run-
ning Android or wp8, is strictly technically speaking no di�erent PCs running
Windows or Linux. A�er all it is possible to run Android on a pc and to run
Ubuntu on certain Android phones whose boot-loaders have been unlocked12.
But if we move away from a strictly technical understanding of the term architec-
ture to think of the term, as Dourish (2014) argues, as a shorthand for “recurrent
patterns of arrangements of so�ware, hardware, and representational practice”,
we can then detect subtle, yet consequential ways in which mobile architectures
are shi�ing. �e last part of this de�nition – representational practices – stands
out, for it is the part – as Dourish & Mazmanian (2013) argue – that enables the
study of so�ware as a cultural form.
In this chapter we have seen that on wp8 and by and large Android too, we

encounter photos as streams of data that can be rendered, shared, or otherwise
transformed (e.g. through �lters, cropping, or resizing) before rendering or
sharing. Even though we mostly encounter them as data streams, we have also
caught glimpses of the fact that photos are still stored as �les on the phone’s
internal storage or on a memory card. For instance, the wp8 PhotoResult

class contains a OriginalFileName property or on Android where in certain
instances we were able to obtain the �le path from a Uri. �is means that the
method of accessing �les – �le-streaming – hasn’t changed compared to the
traditional pc architecture. However, its emphasis is shi�ing. On the pc, we
encounter locally stored photos – or any other �les for that matter – �rst as
a �le that we can subsequently read from or write to using data streams. We
might say that the method of accessing �les on a pc is File-Streaming. But on
the mobile, as we’ve seen in this chapter the emphasis shi�s to the latter term:
File-Streaming. In many cases on both wp8 and Android the �le that anchors a
data stream has been abstracted away entirely on wp8, as we saw in sec. 2.4.5,
and on Android the �le could only be recovered using a clever workaround and
powerful permissions.
�us this shi� in emphasis has signi�cant consequences to the representa-

tional practices that underpin computing architectures. On the mobile this shi�
means that wp8 does not support gi�ing! On Android it means that substantial
workarounds are required.

2.6.2 Workarounds

It is these workarounds that we turn our attention to next. For on the surface,
one might be tempted to read them as a triumph of Android over wp8. A�er
all Android supports gi�ing, while wp8 doesn’t. However, before we make such
claims, we should unpack the nature of the workarounds we used to make gi�ing
‘work’ on Android. Let’s begin with mikegr’s question on the StackOver
ow
forum (2013). �is time instead of just implementing the proposed solution
for getting the �le path of a photo Uri, lets look at some of the discussion the
question as well as some of the proposed answers provoked. O� the cu�, we can
see the reputable and in
uential user CommonsWare express concern: “I have
long been nervous about apps that assume that a [. . .] Uri that represents a �le
can always be converted into a File.” �is concern was further underlined by
the user j m, this time commenting on the most popular proposed solution to
that question – the workaround that we adopted in our gi�ing app:

this is absolutely horrible! you should not continue to propagate
code that “cheats” like this. it only supports the source apps that you
know the pattern for, and the whole point of the document provider
model is to support arbitrary sources — j m on mikegr (2013)

12. see https://wiki.ubuntu.com/Touch/Devices

https://wiki.ubuntu.com/Touch/Devices

22

Both j m and CommonsWare are, of course, correct. �ey recognise that
the Uri handle is opaque by design, and that any apps that attempt to work
around this – for instance by querying the DATA column of the Android Me-
diaProvider api – are treading on thin ice. By and large newer versions of
Android are backwards compatible and can thus run apps that were compiled
against an older version of the Android api. When we ran our app on a newer
version of Android 6.0, the ui and navigation from Activity to Activity still
worked perfectly. However a�er successfully gi�ing a �le, the app crashed while
trying to delete the original �le. Google had changed the permission model, and
it was no longer possible to request blanket permissions to read, write, or delete
�les. So even though we were able to derive the �le path ‘behind’ the Uri we
could not access it13.
In another instance, we found out that we were not able to access and thus

gi� or delete a �le if it was stored on a sd card plugged into the phone in-
stead of the phone’s internal storage. Likewise a number of third-party apps
are making use of the DocumentsProvider api, which may or may not adopt
the DATA convention for deriving a �le path from a Uri. �is convention,
which was adopted before the MediaProvider api was superseded by the Doc-
umentsProvider, was never o�cially solidi�ed and is being followed less by
the DocumentsProvider. �e di�erence in these APIs can be attributed to the
in
uence the Cloud, another dominant computing paradigm of our time.

2.6.3 In
uence of the Cloud

�e point of Android’s Storage Access Framework is to unify cloud and local
storage services under the DocumentsProvider api that encapsulate their ser-
vices14. With the introduction of the DocumentsProvider api, �les stored on
Cloud (storage) services, such as Dropbox, Google Drive, or OneDrive, can be
displayed and interacted with alongside �les stored on a local datastore. So if
we wanted to, for instance, attach an image to an email or message, we could
access the �les stored on our Dropbox just as easily as a �le stored locally. If
we did choose a �le on Dropbox, it would �rst need to be downloaded, only to
be subsequently uploaded again once the message or email is sent. �e Docu-
mentsProvider api handles this �rst step transparently. But it assumes that
the user has a su�ciently stable internet connection and can a�ord the extra
data charges15.
On the surface one might be tempted to see the mobile and the Cloud as

separate domains of computing. However, the Android DocumentsProvider
api illustrates how the cloud is in
uencing mobile architectures in tangible
ways. We already spoke at lengths on how this in
uence required us to code
workarounds. But it also changes how we speak of and refer to data. Whereas
before we would speak of �les, we now speak of ‘openable’ content and deal with
opaque URIs. �is is no matter of mere semantics, as Blanchette alerts us:

While programmers mostly operate within strictly positivists con-
ceptions of language, computer code creates relationships among
multiple symbolic systems, those necessary to move the cogs of the
machine, and those necessary for those operations of the machine
to be situated within language, and thus, social order — Blanchette
(2011, 1045).

13. Eventually we found out that we had to request permission to access that speci�c �le at
runtime. However, this might not always be the case and in this instance required us to update
the app.
14. on this point see, Developers (2016)
15. �is is a big assumption, as in many countries Wi� is not ubiquitous and data packages are

not only capped but also expensive.

23

(a) Database
schema for a sent
gi�.

(b) Database
schema for a
received gi�.

Figure 6: Database schema for gi�ing meta-data.

�us any investigation of mobile architectures needs to not only take account
of the cloud but also how the cloud changes how we represent and talk about
data.

2.6.4 Files are insu�cient

In this chapter it may appear that we, like many developers on forums such as
StackOver
ow (e.g. (mikegr 2013; Álvaro 2016)), lament the loss of the �le.
To some extent and especially in the context of our gi�ing app this may be true,
but we should also also try to understand why contemporary mobile platforms
are moving away from �les and local datastores to a more uni�ed, cloud-centric
datastores.
Driven in part by the rise of mobile phones, computing has become more

social over the past decade. To put it bluntly, �les – a fundamental abstraction
and unit of engagement in computer systems for users and developers alike
(Silberschatz et al. 2013) – haven’t kept pace with this changing landscape. In
the context of our gi�ing app these shortcomings manifest themselves when, in
the course of developing the app, we were confronted with the following two,
related questions:

1. Where do we store a gi� we have just received?
2. Where do we store its meta-data?

Dealing with meta-data

Once a user accepts a gi�, our gi�ing app downloads and displays it, but it also
includes two bits of meta-data surrounding the exchange that need to be stored :
who is the gi� from and what (optional) message did they compose to go along
with it (see �g. 4c)?
Especially when dealing with structured and repeating data such as gi�ing

meta-data the standard practice for storing and accessing such data on a mobile
app is to use an SQLite embedded database. In our case we de�ned a simple data
schema16 for which we also created equivalent Java Classes that can be seen in
�g. 6.
�e main bene�t of storing gi�ing meta-data in such a structured fashion is

that we can easily query gi�ing meta-data that stand as a proxy for the gi� itself.
To show a speci�c gi� – for instance fromGeorge – or to list pending, completed,
or all gi�s our app can simply query the database. Since the local �le path of
both pending sent gi�s and completed received gi�s are stored alongside other
gi�ing meta-data, we can easily display the results of a database query using the
established master/detail ui navigation pattern that can be seen in �gs. 4a, 4b.

16. a formal speci�cation of how the database should be organised.

24

Storing received �les

�e question then becomes where do these local �le paths, which we have stored
in a SQLite database, point to? Here there are two approaches. We can store the
photo in the gi�ing app’s private storage directory or in a public external storage
directory, such as the Pictures/ folder. In this context the terms private and
public refer solely to apps. So stu� that is private to an app can only be accessed
and acted on by that app, whereas stu� that is public can be accessed and to
some extent also acted on by any app, for instance the by the phone’s Gallery
app.
We chose to store received photos in the public Pictures/ folder in a sub-

folder that we created and called Gifts/. We chose this option because of
how we understand and came to articulate the act of gi�ing as a transfer of a
possession and we thought that users should be able to act on the gi�s they
received in any ways that they deem appropriate. For instance, the user might
choose to store the �le on their computer instead of their phone or to move the
�le into a di�erent album or to delete the �le altogether. But this leaves our gi�ing
app vulnerable to inconsistencies, which is why we can understand why other
apps might choose to store the user’s stu� in a private storage directory. Once
�les are placed in public storage, however, an app might lose track of them. In
our case this might happen if a user moves a �le to a di�erent album or chooses
to delete it entirely. �e local �le path that we store as part of a gi�’s meta data,
would no longer be valid. Keeping a �le in public storage also means that when
a user looks at the photo using a di�erent app, for instance the photo’s built-in
gallery app, the meta data surrounding the exchange would no be available to
the user.
Using private storage neither users nor other apps can ‘meddle’ with data

stored there. So the situations we encounter above can be avoided, as �le paths
remain stable in private storage our app can therefore ensure that whenever a
user views a gi� that the meta data surrounding that gi� is always displayed
alongside it. It is thus understandable why to avoid inconsistencies, which are
hard to manage programmatically and can lead to crashes, and to show users
rich views that may include meta data or other content over raw data, many
apps would choose the app’s private storage over public storage directories. But
that control and consistency comes at a cost. �at the user’s stu� – in our case
the gi�s they received – would be hidden behind and can thus only be accessed
through an app. �is phenomena is a manifestation of the inadequacy of both
�les and the datastores they are stored in.

2.7 conclusion

�e goal of this chapter was to look more deeply into the materialities of infor-
mation as it is manifested on contemporary mobile architectures. We uncovered
a shi�ing emphasis of how data stored on the device is made available to apps
through sharing interfaces that prevent apps from obtaining a proper handle
of, in our case, a photo stored on the device that the user wants to gi�. On the
receiving end of this social act we also see the shame shi�ing materialities of
information in e�ect force apps to re-create photo �les in private storage sand-
boxes in order to ensure continued access to them and to present and bundle
these �les together with their associated social meta-data. Such meta-data, such
as who gi�ed this photo, is o�en just as important as the �le itself.
�is interplay between mobile datastores and their sharing interfaces is prob-

lematic and worthy of more sustained investigating – the topic we turn to next
as we formalise our research approach.

3 research agenda

3.1 introduction

In the previous chapters we have come to know the subjects of our study more
deeply: the mobile phone, the stu� we store on it, and the social practices that
surround its use. But the gi�ing �ction and prototypes we developed have served
mostly instrumental purposes so far. �at is to show that the mobile and its
sharing interface are problematic objects. �ese prototypes, however, didn’t
adequately address the deeper problems they helped us to identify. In fact, it is
typical of Research throughDesign (RtD) projects to co-evolve research problems
and solutions. At this point in our inquiry it seems as if our understanding of the
problemhas outpaced our ability to address it. In this chapterwe pause and re
ect
on the work we’ve done so far with the goal of developing and re-articulating
our research objectives.

3.2 share: solution or problem?

We have a whole range of verbs that describe how people relate to other people
through their actions. We show and tell, give and gi�, take and trade, borrow
and steal. In the previous chapters we have seen that if we look at any mobile
interface the only word we seem to know is ‘share’.
Looking at the history of ‘share’ in mobile interface design it is not hard to see

that it has become an entrenched concept that a�ects all aspects of system design
and use, ranging from how we specify feature requirements (see for instance,
Reitmaier et al. 2012) all the way to howwemarket resulting products. Consider
how Snapchat, a relatively new social network that has taken the world by storm,
advertises its service:

Experience a totally newway to share today. Snap a photo or a video,
add a caption, and send it to a friend (or maybe a few). �ey’ll view
it, laugh, and then the snap disappears from the screen.
–“Snapchat” (2014)

While we can certainly say that Snapchat has come up with a novel way of
sharing within the context of current mobile platforms. But if we use a verb
other than ‘share’ to describe the service, it suddenly doesn’t seem novel at all.

Snapchat is a service that allows its users to show photos or videos
to their friends.

By casting all communication acts that mobile phone support or could sup-
port in terms of a ‘share’ operation, we restrict ourselves and create mismatches
between computing architectures and human practices. �is is more than quib-
bling over semantics. Language, especially the language we use within design,
has extraordinary powers, and “is one of our primary sources to knowledge and
insights” (Hansen 2014, p. 22). While we all already know it, I will repeat it here
nevertheless: words matter. We can see that they matter by how we care about
which words we choose and how we use them in our everyday use of language.
So why do we restrict ourselves to one word in the mobile sharing interface,
instead of drawing on a richer spectrum?
Fuelled by ‘share’ and a combination of ubiquitous content, content creation

devices, and connectivity, we are living in a world furnished with digital objects.

25

26

We stand on familiar ground when we consider such objects – be they digital
or physical – as useful or aesthetic, however as Turkle alerts us, we stand on
less familiar ground when we consider them as “companions to our emotional
lives” (2007, 5). As such companions the digital object we access, keep, and
share through our mobile devices are in many ways becoming the ‘stu� ’ of
sociality. In the next chapter we will also see how mobile phones are no longer
‘just’ telephones – technical means for synchronous voice communication at a
distance – but a resource to make and engage with digital objects with people
near and far. In a nutshell ‘share’ – the verb, button, programming interface,
infrastructure or whatever you want to call it – has enabled millions of di�erent
apps to access content stored on the mobile and share it with other people, apps,
services, or devices. But does share actually mean what we intend it to? How
does ‘share’ relate to the other verbs we outlined above? If it is operationalised as
a copy operation on contemporary mobile platforms, how well does this systems
architecture perspective match people’s practices, and perhaps more importantly,
how does it match people’s values as articulated through their practices?

3.3 what constitutes an answer?

We began our inquiry with a simple question “does Windows Phone 8 support
gi�ing?”. Especially in the context of our gi�ing �ction we have seen this decep-
tively simple question unravel into a myriad of not only technical questions but
moral ones as well. �us a critical aspect of re-articulating our research agenda
is to consider what constitutes an answer to our original questions. For instance,
what does it take for ‘share’ to mean ‘gi�’ or ‘show’ and what happens to the
object in the process?

3.3.1 Implicating mobile system architecture

If we return to the Snapchat example, we can see that they have included a
disclaimer on their website:

Please note: even though snaps are deleted from our servers a�er
they are viewed, we cannot prevent the recipient(s) from capturing
and saving the message by taking a screenshot or using an image
capture device. —“Snapchat” (2014)

�is disclaimer illustrates that for some acts of sharing, such as when showing
a photo, the system architecture should be implicated in the act. For instance,
on the recipient’s phone the screenshot functionality could be disabled.

3.3.2 Implicating the app model & data store

In the previous chapters we have already seen the muddle that ensues when
we equate communication acts with sandboxed communication apps. Behind
an icon (on iOS & Android) or tile (on Windows Phone) is not only an app
but also a sandbox that contains the user’s data. Within such a sandboxed app
model, data is hidden behind or inside the app, and data abstractions become
unclear. New abstractions are therefore needed that foreground the user’s stu�
and respond to the fact sharing is a fundamental operation on that stu�, which
may even transform it in the process.

3.3.3 Implicating the cloud

It is almost impossible to talk about the mobile, especially in the context of
digital photography, without also talking about the cloud. To be sure, we might

27

explicitly use cloud services to build or backup a collection of photos or show
them o� to our friends on social networking sites. But at other times we might
consider the photos we take and share as ephemera, for instance a silly sel�e we
send to a friend to make them laugh. Despite these intentions, such ephemera
have a tendency to live on. As the following quote illustrates, we need to carefully
consider how the cloud is implicated in an act of sharing.

In the networked reality of people’s everyday life, the default mode
of personal photography becomes ‘sharing’. Few people realise that
sharing experience by means of exchanging digital images almost
by de�nition implies distributed storage: personal ‘live’ pictures
distributed via the internet may remain there for life, turning up in
unforeseen contexts, reframed and repurposed. –van Dijck (2008,
68, original emphasis)

�e salient question then becomes: if storage is de-facto distributed, how do
we retain awareness and control over our stu�?

3.3.4 Implicating data exchange protocols & access points

Keeping ephemera as ephemera is a complicated task when our stu� moves
through the cloud. Part of this task involves engineering data exchange protocols
that better respond to the intentions and motivations behind an act of sharing
so that a showing operation does not transfer ownership or when gi�ing, as we
saw in chapter 2, the object is removed a�er transfer. In a way this point goes
hand in hand with how the cloud is implicated in acts of sharing.
�e paradox is that the reach of the cloud computing paradigm is such that

it also a�ects the functionality of wireless access points, whose purpose is no
longer to interconnect devices but to connect them to the internet and the
cloud. For instance, it is not possible to create a wireless access point to share
�les locally on current mobile platforms without also sharing your 3g internet
connection. Many wi� hotspots prohibit peer-to-peer connections between
devices connected to the same access point.
�e mobile is more than a mere portal into the cloud and its sharing interface

as well as how we engage socially with content stored on the device shouldn’t
have to depend on cloud services. We should, therefore, be mindful of how
exchange protocols and access points function for people unwilling or unable to
a�ord the cost of using cloud services or in situations when these are unavailable.
Such e�orts would, in e�ect, invert the metaphor of the cloud by creating hyper-
localised, ad-hoc instantiations of the cloud that still provide similar, social
services: a cloudlet, if you will.

3.4 a way forward

�echallenge for us becomes to design a system that gives people better awareness
and control over the stu� that matters to them. Given the various components
we have implicated in this undertaking, such a system needs to �rst carefully
consider current relationships between the mobile os, its datastore, its sharing in-
terface, and the cloud with the subsequent goal of re-imagining that relationship.
First and foremost, this is a substantial technical undertaking and will require
us to continue to dive into the technical realities of mobile architectures and
cloud infrastructures. From personal experience, for instance when engineering
to gi�, I can say that these realities are best understood when working with the
materials at hand: that is, through programming – an activity that deserves some
unpacking.
Downey (1998), a self-proclaimed anthropologist sitting among computer

engineers, describes this activity as ‘boundary blurring’. From an objective point

28

of view, we might say that the programmer and the machine they are program-
ming are two distinct and separate entities. However if we re
ect on the act
of programming, and this is the point that Downey (1998) is making, we also
extend our agency into the machine. While we certainly never articulated it
so eloquently, this boundary blurring resonates with my direct experience of
programming. However as Phil Agre (1995, 73) points out for programmers
immersed in the closed worlds of system development, “it becomes di�cult to
imagine the perspective of somebody who does not view a computer system
as a logical anatomy, an ontology made of datastructures, a set of formal rela-
tionships and constraints, and a network of paths for data to move along. Since
the programmer is imaginatively inside the system, the very concept of a user
interface can be di�cult to grasp or take seriously” (cited in Suchman 2007,
188).
Taking these perspectives into account technical expertise cannot be both

necessary and su�cient condition. We therefore also need to develop our under-
standings of how users interact with and come to understand the stu� that they
keep and share on their mobile phones and in the cloud and let that understand-
ing guide our inquiry. �is is the pattern of inquiry – to bring technically and
socially complex, multi-dimensional and changing ideas into correspondence1
– that we have implicitly been following thus far and that we formalise at this
point. It is an approach, as we saw in the introduction to this dissertation that
�ts with a material perspective and the Research through Design approach.

3.4.1 Research through Design Process

A recurring theme within Research through Design is that documenting the pro-
cess is a crucial activity and yet, judging by the repeated clarion calls advocating
for that practice, is probably also one that gets neglected. Documenting not only
the Research through Design process as a whole but also keeping an account
of the ever changing properties of a design-in-the-making is a key method for
elucidating some more epistemic aspects of designs (Dalsgaard 2016). Others
aspects and forms of knowledge are encoded into the object itself. Here Bardzell
et al. (2015) note that Research through Design should be seen as “a thing-making
practice whose objects can o�er a critique of the present and reveal alternative
futures, while remaining grounded in empirical science, behavioral theory, con-
temporary technological possibility, and socio-cultural practices” (Bardzell
et al. 2015, 2095). �e active role of the artefact is emphasised by Stolterman &
Wiberg, who note that artefacts ‘co-produce’ knowledge and “manifests desired
theoretical ideas as a compositional whole” (2010, 109). A concept that is also
expressed by Zimmerman et al, who extend this line of reasoning: “the proto-
types themselves were experiments with material and technology, codi�cations
of understanding about users and contexts, and sketches of potential futures”
(2010, 315). �is resonates with the perspectives that a prototypes functions as a
“re
exive probe into the practical materializations that con�gure new technologi-
cal objects” (Suchman et al. 2002, 175).�us, Research through Design sees the
act of making as a route to discovery in itself, where prototyping becomes a site
of inquiry. Other design research programs, such as Koskinen et al’s Constructive
Design Research, likewise centralise the thing that is constructed, which in turn
“becomes the key means in constructing knowledge” (Koskinen et al. 2011, 5).
As computer so�ware is thematerial of our Research throughDesign approach,

it is the encounters we have with that so�ware that we document and present
in this dissertation: namely, the interfaces (both UIs and APIs) between our
ubiquitous computing infrastructures and architectures. Here Dourish & Bell
(2011) remind us that when we try to understand ubicomp we can’t just do
it technically but also socially, culturally, and historically. A view that Ingold

1. On this point see Tim Ingold’s (2013) metaphysics of creativity and design

29

extends to any type of material, for “the properties of materials, in short, are not
attributes but histories” (Ingold 2011, 32). What better place to start then with
one of the most mundane aspects of computer system design: the humble �le.

3.5 what is a file & what should it be?

Files are, to put it bluntly, archaic and unremarkable. In fact, we only really
noticed the important role they play in system architecture when they gomissing,
for instance on Windows Phone 8, or rendered predominantly invisible, as they
are on Android. But what exactly are we missing? To understand what a �le is
technically and the role it plays in computer architecture, we might turn to a
foundational book on the topic, Silberschatz et al’s ‘Operating Systems Concept’,
where we are confronted with multiple de�nitions and characterisations:

1. A �le is a collection of related information de�ned by its creator (Silberschatz
et al. 2013, 453).

2. �e operating system abstracts from the physical properties of its storage devices
to de�ne a logical storage unit, the �le (Silberschatz et al. 2013, 455)

3. For most users, the �le system is the most visible aspect of an operating system
(Silberschatz et al. 2011, 455).

Implicit in these characterisations is the mediating role the operating system
plays between �le ‘creators’ (computer scientists/engineers) and its ‘users’. �is
is a topic that Harper et al. (2013) explore in great depth in pursuing a line of
reasoning that – contrary to the title of their paper “What is a File?” – explores
what a ‘�le’ does in practice, namely to bind together the concerns of users and
computer scientists/engineers. A �le then ismore than just a “collection of related
information” but also “a label for a space of organised collaboration” between
users and engineers (Harper et al. 2013, 1126), what Star (2010) refers to as a
‘boundary object’. �rough this organised collaboration engineers can worry
about, say, the e�ciency and reliability of a storage system and users can edit the
newsletter for their football club or look at the photo of the sunset they took last
week. �is is a remarkable achievement and illustrates “the talent of the designers
of early systems [which] is re
ected in the fact that despite these di�erences in
orientation, the interaction that is undertaken nevertheless succeeds: users by
and large get what they want, a �le that can be handled as they understand it
and a system that can function e�ciently and e�ectively. �ings get read and
saved, users can act, the system can function” (Harper et al. 2013, 1129).

3.5.1 Icons & Grammars of Action

�ecunningness2 of early designers is further shown in how�les are re-presented
on the pc namely using icons and how they can be acted on. Icons are repre-
sentations of things – �les or computer programs – that give that thing a sense
of place – on the desktop or in the documents folder. When a �le is moved to
another folder, its icon moves with it. When it gets deleted, its icon disappears.
In this design there is a functional coherence that is built on deceit. �e �le icon
reinforces the notion that a digital �le is like a physical �le – a bounded entity of
sorts – but obscures the fact that the �le might be fragmented across the hard
disk it is stored on. Dragging a �le icon into a di�erent parent folder reinforces
the notion that its the �le that is moved, when in fact it is the full path of that
�le that is renamed, which has the desired e�ect of changing its position in the
directory structure (see Silberschatz et al. 2013, 518). Actions such as moving
and deleting �les are as old as the pc itself and form part of the de�nitional

2. Flusser argues that all design requires an element of deceit and trickery to “seduce people
people into perceiving distorted ideas” (1999, 26).

30

grammar of action the landmark Xerox Star, the �rst desktop computer with a
graphical user interface.

�e [Xerox] Star has a few commands that can be used throughout
. . . �ey strip away extraneous application-speci�c semantics to get
at the underlying principles. Star’s generic commands are derived
from fundamental computer science concepts” – Smith et al. (1982,
525)

Lets look at the move action again to better understand how these generic
commands were intended to work.

move also reinforces Star’s physical metaphor: a moved object can
be in only one place at one time. Most computer �le transfer pro-
grams only make copies; they leave the originals behind. Although
this is an admirable attempt to keep information from accidentally
getting lost, an unfortunate side e�ect is that sometimes you lose
track of where the most recent information is, since there are mul-
tiple copies
oating around. move lets you model the way you
manipulate information in the real world, should you wish to. We
expect that during the creation of information, people will primarily
use move; during the dissemination of information, people will
make extensive use of copy. (Smith et al. 1982, 526)

�e goal of commands like move, copy, and delete, which Harper et al. (2013)
refer to as the grammar of action, is to let users excerpt direct control over their
stu�, as illustrated in the above discussion of the move command, while just as
importantly retaining awareness of where that stu� is.

3.6 outlook – moving to the mobile and net-
worked computing landscape of today

At least so it was on the pc. But, the tools and interfaces that people use today to
manage and share their digital stu� has not kept pace with the changing nature
of that stu�, the practices of users, and the exponential advances in devices,
storage, and networking technologies that shape the digital landscape we inhabit.
In fact, the grammar of action encapsulated in our contemporary toolsets and
interfaces are built upon the de�nitional grammar of the �rst PCs of over 30
years ago. �is limited toolset of the past no longer encompass new possibilities
of the mobile and the cloud and ultimately contribute to mismatches between
what people can do and what they want to do with their digital stu�.
Despite these shortcomings, Harper et al. (2013) argue that we shouldn’t

abandon the concept of the �le altogether, precisely because for over 30 years it
has been such an e�ective tool to bind together the concerns of both users and
engineers and through the ways it gives users awareness and direct control over
the stu� that matters to them.
What is instead needed is to rede�ne what a �le is by closely examining the

constraints and possibilities of its current grammar of action with an eye on
de�ning “a new grammar of action for an hci of the 21st century” (Harper
et al. 2013, 1126). We ally ourselves to, and extend this line of research, by
leveraging the mobile phone in particular and the cloud services with which
mobiles interface more generally to interrogate current and reimagine future
grammars of action by attending to the rich social practices that surround and
give meaning to the use of mobile phones and cloud services.
�emobile highlights that we need to have a social view of �les. It are precisely

these social practices that we turn to next.

4 collecting & showing

4.1 introduction

�eword telephone is comprised of two parts, both derived from Ancient Greek:
tele (long distance) and phone (speaking). �e popularity of messaging apps on
contemporary smart phones amply demonstrate that nowadays we do much
more than speaking on our phones. So perhaps we should refer to them instead
as telecommunication devices, because the legacy of the �rst part of the term
telephone – implying interaction at a distance – remains an intrinsic assump-
tion of mobile interface design. In this chapter we study and challenge this
assumption by giving an interwoven account of the theoretical and practical
work we undertook in pursuit of deriving and designing a grammar of action
for co-present interactions.
Especially when making communication or sharing apps, as we did in chapter

2, it is easy to focus too much on the mechanics of the exchange, and therefore
to “overlook the humans who are doing the communicating” (Harper 2010,
49). When we focus on the mechanics, we think of communication acts as
messages that need to be transferred from one person (or device) to another. To
be sure, this model has proven generative potential formobile design. Sometimes
communication is about the message, such as when we send a text to a loved
one to tell them: “I’m on my way home.” But the deeper problem, as Harper
alerts us, is that “the vision used to orient design is of a world that is not the
same as the one real people populate” (Harper 2010, 240). Instead, we need to
think beyond simple messages and �gure “communication between people [as]
a performance that ties people together (or throws them apart) in various ways”
(Harper 2010, 247). Seeing communication as a performance highlights that
it is not just about what we say, but how, and where we say it. �ese di�erent
characterisations of communication, as simple messages or as encompassing
performances respectively, help us understand why mobile design (research)
tend to focus on telecommunication with absent others. But before we examine
existing and build new systems that explore co-present interactions, we should
engage with the deeper issue that Harper (2010) identi�es. Namely, that we need
better ways to think about co-present interactions in the �rst place.
To advance this goal we �rst show how we sensitised ourselves to theories

on proxemics, context, identity, and embodiment to obtain a more nuanced
understanding of performative aspects of communication and co-present in-
teractions. We explain how we used these theories as a critical lens to examine
and critique current systems that support co-present interactions. But far from
just critiquing, we also show how we applied and re�ned this lens to generate
and map out a new set of co-present interactions on mobile devices. We then
explain how we integrated insights, sensitivities, and critical stances, derived
from theory, to explore these through the process of design, culminating in
the design and development of two prototypes that express and explore key
concepts. We present these aspects of our work in four sections, sensitising,
critiquing, integrating & generating, and exploring, before we re
ect process
and draw some implications for design. In choosing this structure, we depart
from conventional practice, where related work, usually discussing theory and
related systems, is presented as an upfront baseline that is o�en bracketed out
from the ‘actual’ research. Here we show how theory, related systems and even
our own previous work were central throughout: a constant, yet productive, site
of struggle. Our theoretical understandings, drawn from a variety of di�erent
intellectual disciplines, emerged as we engaged with them at the di�erent stages

31

32

Figure 7: Kendon’s F-formations & Hall’s proxemic zones.

of our research. So beyond generating and exploring co-present interactions, it
is this story that we tell.

4.2 sensitising

Focusing on performative aspects places the importance of communication
at the heart of the human condition, and destabilises the assumption that the
message of a communication act is somehow more important than how it is
bound to context, time, and identity. �is broader view opens up a path for
research that looks at how people might want to produce and engage with the
media stored on their phones when they are co-located. Here, we turn to theory
to sensitise ourselves to salient concepts such as context, time, and identity to
understand how we might design for more meaningful co-present interactions,
as well as how we shouldn’t.

4.2.1 Understanding co-present practices

Amajor conceptual lens used to describe and analyse co-present situations is
Edward Hall’s theory of proxemics (1966). Hall has coined the term proxemics
for people’s use and perception – through eyes, ears, nose, and skin – of space.
Many of Hall’s observations focus on how �xed-feature spaces (e.g. architecture)
interact with semi�xed-feature spaces (e.g. furniture), and how this a�ects people,
and how they interact with one another. While our experience of space certainly
depends on the interplay of �xed- and semi�xed-feature spaces, for Hall the
most signi�cant category of spatial experience is a mostly unstated, informal
space: the distances maintained in encounters with others. He proposes that a
person does not end at his or her skin, but is surrounded by a series of expanding
and contracting �elds: a space, whose size and properties vary on account of
culture (more generally) and personal relationships. �ese can be classi�ed into
four, discrete proxemic zones of Fig. 7: intimate, personal, social, and public.
While many of his observations seem common-sense, they relate to a behaviour
– our use and perception of interpersonal space – that largely lies outside of our
awareness; we take it for granted. Hall uncovers these through his descriptions of
causes and e�ects, highlighting how these are interpreted. For instance, people
who are angry will move in close to make their point, just as people who are
amorous will move in close to express a�ection. And it’s not just touch, but also
sensing the heat of another person that combine as we feel intimacy. But the very
same sensations (touch & heat) can make you feel claustrophobic in a packed
train, so we keep our muscles taught to maintain our space.
Researchers, such as Greenberg et al. (2011), who have grounded their work

in Hall’s proxemic theory and terminology acknowledge – as we also suspected
in our readings – that Hall’s theory is at best suggestive to design and that “we
just don’t understand the hci of proxemics” (Greenberg et al. 2011, 50). But we
can �nd inspiration in Hall’s approach that re
exively integrates observations.
Harper advocates for a similarly re
exive approach to understand everyday
actions, such as a son brewing his mother a cup of tea to be ready for her when
she gets home. We don’t need theories to explain the signi�cance of such acts:

33

“we [need] to use the expertise about the world that we [gain] by living in that
world” (Harper 2010, 194).

4.2.2 Understanding boundaries of people & time

If we only focus on certain aspects of communication, such signi�cances can
easily be lost. Much research to date has focused on mediating the ‘bodily me-
chanics’ of communication through computers, such as capturing and conveying
gestures or glances (Harper 2010, 10). While, bodily mechanics are important,
focusing solely on them creates a boundary around individuals. Hutchins ar-
gues that it is precisely these boundaries that need to be so�ened and advocates
that “the proper unit of analysis is [. . .] not bounded by the skin or the skull.
It includes the socio-material environment of the person” (1995, 292). Similar
arguments apply to time. Experience, as Hutchins notes in a later article, “is not
only multi-modal, but also multitemporal or temporally extended in the sense
that it is shaped both by memories of the past (on a variety of time scales ranging
frommilliseconds to years) and by anticipation of the future (over a similar set of
time scales) (2010, 432). We integrate our memories of the past, experience of the
present, and anticipation of the future when we engage with others (Suchman
2007) and with artefacts of our world (Hutchins 2010). Rigid boundaries of
time or bodies cut through lines of interaction and obscure relevant phenomena,
such as the signi�cance of a cup of tea brewed in anticipation of mother’s arrival.

4.2.3 Understanding identity

If we so�en boundaries of bodies and time, then important implications follow
for identity that contrast with how identity is approached by common ontolo-
gies of computer science. O�en these start with an instance or individual – an
anatomical, and bounded unit – and associate a unique identity to it, to discrim-
inate one instance from another. �ey further group instances together to form
sets, classes, collections, etc. based on common attributes. To be sure, this is
a powerful model at the heart of many computing systems and databases in
particular. It is, however, also one that views identity rigidly. Is this show we
should be thinking about the identity of a person? While identity is something
unique to us, it also “implies a relationship with a broader collective or social
group of some kind” (Buckingham 2008, 1). In so�ening borders, the question
then becomes how does identity interact with the broader collective over time?
Buckingham argues against rigid views because: “who I am (or who I think I
am) varies according to who I am with, the social situations in which I �nd
myself, and the motivations I may have at the time” (2008, 1). In discussing
di�erent disciplinary orientations towards identity, he alerts us that identity is
not something we posses, or something we are, but is something we do. It is
something that comes into being in dialogue between self and other.
One of the more prominent theorists on identity is Erwin Go�man, who sees

identity as something that is performed (1959). Go�man approached identity
through the metaphor of theatre to describe how individuals use their physical
and social surroundings to present themselves to the world and, in turn, how
the ‘world’ interprets their ‘performance’. He noted that the relationship between
the performer and the audience is one of impression management; through
their (inter)actions performers project themselves, whether intentionally or
unintentionally, to an audience that interprets their (inter)actions. So both
parties are involved in negotiating a ‘performance’. Go�man also classi�ed two
types of performance ‘regions’ that a performer has access to and that are used
to maintain their impressions, namely the front-stage and the back-stage. �e
front stage is an attempt by the performer to give the appearance that their
performance is their de facto standard. Here, clothing, posture, speech, gesture,

34

and expressions, can also a�ect performances. In turn, the backstage is the
region where the performer can openly contradict front-stage performances,
drop their front and “step out of character” (Goffman 1959, 70). While Go�man
is not without critics (e.g., Buckingham 2008), he, like Hall, was a perceptive
observer of social interactions. He elevated the world of social interactions from
the obscurity of plain sight, by giving us a vocabulary to talk about and observe
it.

4.2.4 Understanding context

�e discussions so far show that co-present interactions, like communication
acts in general, are highly contextual. But as Dourish alerts us, it is a context of
a particular nature (2004). Especially face-to-face, context is an interactional,
dynamic, occasional property that arises from activity. �is characterisation
departs from how we usually delineate context, as something that is stable and
can be measured and encoded without reference to the activity at hand. Within
any dialogue what is and what isn’t contextually relevant cannot be established a-
priori; a comment can trigger a memory and lead the dialogue down a di�erent
path. So something that wasn’t contextually relevant before, now is. In fact,
negotiating context is a very ordinary achievement (Dourish 2004); we do it
almost automatically, o�en without noticing. �is interactional view of context
suggests inquiries and designs that focus not on how to re-present context, but
rather on
exibly accommodating changing contexts.
Harper argues that to sensitise ourselves to the performative nature of commu-

nication acts, then we must see these along three dimensions: “the how of the act
itself (the bodily skills involved), the who of the act (where one needs to be alert
to the intentions of the actor themselves and how the undertaking of some act
conveys a sense of identity or self for that person and to the audience or recipient
of the act), and third, the where of the act (the location of its performance)”
(Harper 2010, 245). Or, in short, context, communication, and identity are
enmeshed in performance.

4.2.5 Understanding photographic (co-present) practices

To show how this enmeshing works in practice, we identi�ed (mobile) photogra-
phy as a salient practice in which the theories we have discussed take hold in a
way that also relates them to (digital) media. Photos usually depict unique, mem-
orable, happy, events and rarely the routine, sad, or ordinary (Shove 2007). In a
sense they re-present an idealised self (Goffman 1959). Photos with family or
friends contribute to a sense of belonging and of self. Related practices of photo
viewing and sharing re-produce and mediate deeply rooted social practices such
as gi� giving (Mauss [1950] 2000) and storytelling (Van House 2009).
Kindberg et al examined how 34 people in the US and uk use their camera

phone, their intentions at the time of capture, and subsequent usage patterns
(2005a). �e authors distinguish these intentions along two dimensions: a�ective-
functional; and social-individual, where social use is further broken down into
co-present viewing and absent sending/viewing. �eir study shows a�ective
photos outnumbering functional, and social outnumbering individual photos.
Most image sharing happened in the moment and on the phone’s screen, and
rarely via Bluetooth or MMS. Results also show that post hoc sharing didn’t
happen nearly as o�en, because “the time and e�ort one must put into sending
these ‘gi�s’ [is] di�cult to achieve in themoment” (Kindberg et al. 2005a). Some
participants simply ‘hadn’t gotten around to it yet,’ forgot or lost the impulse to
share. When post hoc sharing did happen, it o�en involved storytelling.
Chalfen further analyses how people communicate and tell stories with photos

(1987). He contends that photographers are reluctant to create self-containing

35

visual narratives. �e narrative remains in the head of the photographer: “a
picturemay be ‘worth a 1000words’ . . . [but] pictures don’t literally ‘say’ anything
– people do the talking” (1987, 70). �is does not mean that photos always
need to be accompanied by a narrative especially if shared with close-knit, yet
absent friends (Kindberg et al. 2005a). But it does illustrate why post hoc,
co-present sharing is a practice of enduring importance (Van House 2009).
Photos, especially those we cherish, re-present memories, usually of “moments
of positively valued change, marked by parties, o�cial recognition, or public
celebration” (Chalfen 1987, 96). In this sense, photos link to identity, group
belonging, and presentation of self. �e stories we tell around photos do more
than contextualise a photo but also contribute to our biographical ‘narratives’
– the stories that explain ourselves to ourselves (Buckingham 2008). Face-to-
face sharing lets people adapt their presentation of photos, and with it their
presentation of self, to their social surroundings. Such face-to-face sharing is
a “dynamic, improvisational construction of a contingent situated interaction
between story-teller and audience” (Van House 2009, 1073). �is explains why
applications, explicitly designed for telecommunication of photos (e.g. Naaman
et al. 2008) still �nd their use in co-present situations.

4.3 critiquing

In the last section we looked at co-present practices and developed a perfor-
mative lens of co-present interactions by sensitising ourselves to concepts of
identity, context, and time. �is lens destabilises simpler, yet prevalent, views of
interacting humans. Here, we show how we applied and re�ned our sensitivi-
ties by critiquing related work through this lens. We identify two examples of
related work that are representative of how co-present or proxemic interactions
are commonly conceptualised. We intend for discussions to be productive, a
chance for us to contextualise and interrelate what we learned and to identify
opportunities for design. But we also recognise that criticism, an embraced part
of more mature design disciplines, can be perceived as negative and unhelpful,
so to set the tone for a constructive discourse, we start by critiquing our own
previous work.

4.3.1 Mobile Digital Stories

In previous, collaborative work we designed a mobile digital storytelling system
to suit the needs and functions of rural African communities. Informed by
ethnography and technology experiments involving storytelling, implemented a
design workshop to involve users in a rural community in South Africa’s Eastern
Cape in the design of a mobile digital storytelling system. Using this method,
we created a mobile digital storytelling prototype to suit the needs of rural users.
Details of our design process and the resulting prototype, that can
exibly accom-
modate di�erent digital storytelling techniques, have been published elsewhere
(Reitmaier et al. 2011). For our critique we focus on how I1 �eld-tested the
prototype in a rural community in Kenya. During this formative evaluation,
I didn’t consider performative aspects of storytelling and focused instead on
how people created stories – how they took photos, recorded audio, and stitched
them together into digital stories – on our prototype. While I also gained more
diverse impressions of the system-in-use and recorded these in my �eld notes
and pictures, my unit of analysis during storytelling activities was centred largely
on the prototype and the person interacting with it. It was only a�er sensitis-
ing myself to theories of distributed cognition (Hutchins 1995) and situated
action (Suchman 2007) that I understood the lines of interaction that were

1. I switch to the �rst person voice here to take ownership of this critique.

36

being cut. People did not merely create, nor tell, digital stories, they performed
them. One storyteller paid little attention to the prototype when recording her
story and instead looked deep into my eyes. Users tailored performances to
speci�c (co-present) audiences; they engaged with and drew on their physical
and social surroundings, o�en in co-present and collaborative creativity. While
I was able to re
ect on these activities with more appropriate analytical lenses, I
only begun to understand the meanings users created well a�er the fact (Reit-
maier 2011). �is illustrates how narrow disciplinary orientations – in my case
on usability – obscure important aspects of co-present interactions on mobile
devices/applications, especially how these are constituted in and inseparable
from physical and social contexts of use.

4.3.2 Mobiphos

Mobiphos is a novel interface that supports photo capture and automatic co-
present, synchronous sharing within a prede�ned group (Clawson et al. 2008).
Reading that paper, we suspected that privacy would be a major issue; but to our
and the researchers surprise it was not. Because photo-capture is automatically
linked to co-present sharing, the consequences of people’s actions are apparent –
all members of the group will be able to see all the photos you take. So, people
adapted their photo taking behaviour to take this into account. Users created
meanings by matching the possibilities of the technology to their ongoing goals,
on the
y; instead of worrying about privacy they adapted their photo taking
behaviours and at di�erent times collaborated or took mischievous and funny
photos for other to see.
While Mobiphos can provide an enchanting experience, it works better for

certain genres of photography, such as tourist photography (Chalfen 1987).
�is is also the scenario in which Mobiphos was deployed. Likewise, the tourist
is an established social role (Goffman 1959), that carries with it conventions
and norms that also relate to photo taking, for instance that photos tend to be of
places and objects. �e design and deployment of Mobiphos also sets an explicit
timescale that is limited to the duration of the co-present ‘camera recreation.’
We are le� to wonder what happens before and what might happen a�er?

4.3.3 Pass-them-around

We also �nd inspiration in Lucero et al’s collaborative, co-present, and multi-
screen photo sharing experience called pass-them-around (Lucero et al. 2011). By
pairing multiple phones together, Lucero et al are able to leverage the metaphor
of passing around paper photos, whereby a photo is passed from one phone
to the next. In their prototype users can either share a collection of photos
sequentially or share individual photos one at a time. However, the emphasis
of that particular paper is on the multi-screen interaction technique and the
spatial arrangements of these. It does not explicitly consider which photos, out
of potentially thousands, users might want to share.

4.3.4 Proxemic Interactions

Greenberg et. al recognise the importance of spatial relationship in proposing
and formulating an admittedly speculative vision of ubicomp, namely proxemic
interactions: “just as people expect increasing engagement and intimacy as they
approach others, so should they naturally expect increasing connectivity and
interaction possibilities as they bring their devices in close proximity to one an-
other and to other things in the ecology” (Greenberg et al. 2011, 44). Proxemic
interactions are triggered by sensing relationships between people and digital as
well as non-digital objects. �ese relationships are characterised and measured

37

along �ve dimensions: distance, orientation, movement, identity, and location.
In developing di�erent scenarios and applications, they show how Hall’s (1966)
proxemic zones (see Figure 7) can: “regulate implicit and explicit interaction;
trigger such interactions by continuous movement or by movement of people
and devices in and out of discrete proxemic regions2; mediate simultaneous in-
teraction of multiple people; and interpret and exploit people’s directed attention
to other people and objects” (Ballendat et al. 2010, 121). �e researchers have
implemented a number of prototypes, making use of ‘�ne-grained knowledge’
of these dimensions by tracking them through a motion capture system. �e re-
sulting prototypes are rule-based systems. �e proxemic presenter, for instance,
augments traditional presentation tools, and shows presenter notes when the
person presenting turns towards the display. �e proxemic media player pauses
when a person starts to read a book. It can interpret pointing gestures to allow
users to select di�erent media items, and displays the movie title when another
person enters the room. �ese applications are intuitively appealing, and show
that Greenberg et al. are correct that devices should react to proxemics. But
we are concerned that such information is encoded in a representational view
of context (Dourish 2004). Likewise, Go�man teaches us that people behave
di�erently in relation to di�erent contexts. We are concerned that such proxemic
interactions are operationalised along too ridged and narrow a de�nition of iden-
tity that “uniquely describes the entity” (Greenberg et al. 2011, 44). What might
proxemic or co-present interactions look like, that are built upon a performative
account of identity and an interactional understanding of context? And what
would they look like, not in the conference or living room of the future, but on
the presently ubiquitous mobile phone.

4.4 integrating & generating

�e theories we considered so far have largely been formulated prior to, or
independent of, a device that is shaping the communication landscape around
us: the mobile phone. In this section we revisit the theory we outlined earlier
to integrate and relate these to how people (might want to) engage with each
other and their mobile devices when co-present. In the process, we generate new
design spaces and suggest under explored phenomena and avenues for research.
A key aspect of our performative lens is Go�man’s theory on the presentation

of self. It has been widely applied to analysing how we present ourselves on social
media outlets, such as Facebook and MySpace, where we write ourselves into be-
ing (boyd 2008), using text, but also media. In everyday co-present interactions,
however, our bodies, not our pro�les, are the focal point of that performance. We
use gesture, speech, and facial expressions; augment them with clothing styles,
in order to project who we are (Goffman 1959). Combining these perspectives,
leads us to question what role media plays in our co-present ‘performances’? To
do so, we �rst need to understand how media links to performative aspects of
identity? Perhaps a better way of understanding identity is when we are stripped
of it. In Asylums, Go�man describes how this can happen when mental patients
are institutionalised (Goffman 1961). Names are replaced by numbers; our
clothing with a uniform; our hair gets shaved o�; our pockets are emptied; and
the small paraphernalia that we carry on our person – wallet, o�en containing
pictures, briefcase, purse, handbag, book, etc. – are also removed. �ese items
form a person’s ‘identity kit’, crucial items for the management of a personal front
(Goffman 1961). For some, the mobile phone, as a physical object, is an intimate
part of their identity kit: the brand, the colour, and how it is accessorised. But
the mobile is more than a physical device; it is a repository of information and
histories (Ling 2008). So beyond physical devices, how do mobiles �gure into
our identity kits? What does the stu� on the device – the playlists, gallery, call

2. �ese correspond to Hall’s (1966) zones.

38

and SMS log, etc – say about us? What role do these personal repositories play
in how we present ourselves face-to-face?
To answer these questions we revisit the front and backstage regions of Go�-

man’s concepts of impression management. Looking at mobile phones and the
applications we use on them, we might say that they are front stage devices, as
they provide “insights into our tastes, our style of consumption, and perhaps
our allegiance to certain groups” (Ling 2008, 96). But we might also say the
mobile is a back stage device, as it has “evolved into a signi�cant repository of
personal information” (Ling 2008, 97), o�en containing sensitive information
which might, to use Go�man’s terminology, contradict the performer’s front.
But it isn’t a purely back stage device either, as we draw upon this repository on
applications, like Facebook, Flickr, messaging, and email, to present aspects of
ourselves to the people we communicate with, enabling and sustaining a front
stage performance. �is dual characterisation of the device also explains, why
when co-present, people are reluctant to let go of their mobiles, opting instead
to show a photo to their friends while holding onto the device. We argue that a
better way of �guring the mobile is as a back stage device that interfaces with the
front stage, both asynchronously using Facebook and Email or synchronously
when co-present.
When thinking about co-present interactions, the coming together of people

(as well as their devices), it is easy to see these as isolated events. But the bonds
between people remain intact, as they move between periods of absence and
presence. We can think of these as rhythms that punctuate life (Lefebvre 2004).
Or as Suchman reminds us, interactivity, or engaged participation with others,
does not just require a presence, but also an autobiography, and a projected
future (Suchman 2007). Far from being isolated events, we look forward to
our get-togethers. To be sure, some get-togethers are spontaneous, but rarely
completely unexpectedly as a substantial degree of ordinariness characterises
our lives (Dourish 2004). During get-togethers, we use our mobiles to share a
past experience, a piece of our autobiography so to speak (Van House 2009).
So why can’t we use our mobiles to project into the future to better support such
practices? Can a system be designed for people to draw upon the media they
produce and consume while being mindful of absent others, but rather than
sharing in the moment or forgetting altogether (Kindberg et al. 2005a), project
into the future? �at is, to anticipate future presence and the joy of sharing
photos face-to-face might bring, where intersubjectivity is richer (Hollan &
Stornetta 1992), and where we can co-orient (McLeod & Chaffee 1973)
towards and make sense of the media together?

4.5 exploring ‘share face2face’

All of these questions provoke us to think about what meaningful co-present
interactions on mobile devices might look like. Shaped by our performative lens
we identify a design space that we call Share Face2Face. �is space assumes that
the natural co-present sharing pattern is not necessarily a pattern of sending �les,
but a pattern of co-consumption and co-orientation. Within this class the natural
sharing gesture is show-and-tell, in which a small group of people co-orient
themselves towards the mobile’s screen to look at a photo or listen to a song,
together. Share Face2Face does not see these events as isolated, but as something
that people might look forward to. As such it has a so�ened boundary of time,
and explores how to enhance these encounters, by allowing people to draw upon
the media that they produce and consume while apart and being mindful of
others at a di�erent time and place; and then to bring such acts of mindfulness
into a co-present situation, at a later time or in a di�erent place. �is extended
timeframe renders Share Face2Face into a design space that is more deliberate,
slow, and curatorial; that leaves room for pausing and pondering; and allows

39

people to anticipate and look forward to future presence. It is not about sharing
across distance in the right-here-and-now, but sometime in the future, when the
time is right, when we re-connect face-to-face.
If we look at this design space closely – how it interweaves with social practices;

and how it is informed by a theoretical sca�olding of a variety of intellectual
disciplines – we see a wicked problem. Basically this means that our formulation
of the situation is an integral part to addressing it (Gaver 2012). As such, it war-
rants a research through design (RtD) approach (Zimmerman et al. 2010). While
crossing disciplinary boundaries during our ongoing theoretical ponderings are
an invaluable resources that help us to observe, talk, and think about co-present
interactions, in choosing a RtD approach we should also remain true to our
disciplinary orientations, namely interaction design and computer science. In
crossing boundaries, it is easy to become dismissive of our own skill/et set, which
in comparison to the perspectives and insights that others bring to the situation
appear unremarkable and ordinary. As re
ective and re
exive design researchers,
we embrace the unique perspectives and skill sets that we bring to the situation
and recognise how we generate knowledge. As interaction designers, we have
developed a deep understanding of what so�ware, interfaces, and sensors can
and cannot do. �ese understandings and skill-sets colour our interpretations of
theories. We agree with Gaver when he says, “the practice of making is a route
to discovery” (Gaver 2012, 942). �us, the prototype (Suchman et al. 2002)
presents a chance to express, and through the process of prototyping, further
our understandings of these co-present interaction spaces. We experiment with
technological possibilities – new arrangements of people, contexts, and technolo-
gies – to build the right thing (Zimmerman et al. 2007), to change and possibly
disrupt behaviour (Rogers 2012) and see what reality could become (Löwgren
& Stolterman 2004). We are also inspired by Hutchinson et al’s argument that
there is value in creating very simple prototypes, or technology probes, that o�er
a single function and are o�en le� strategically incomplete and
exible. Such
probes are important tools in “challenging pre-existing ideas and in
uencing
future design” (Hutchinson et al. 2003, 19).
In the following two sections we introduce one probe and one prototype

and demonstrate how they express our understandings of the design space we
identi�ed.

4.5.1 Sketching Share Face2Face

In looking for pragmatic design solutions (Marsden et al. 2008) – ones that
don’t require adding infrastructure – we explored ways to convey our operative
image of Share Face2Face on existing camera phones. Researchers studying
camera phones have identi�ed that the impulse to share is strongest in the
moment (Kindberg et al. 2005a). A notion that they �rst identi�ed in an earlier
paper, appropriately titled: I saw this and thought of you (Kindberg et al. 2005b).
Looking at how media is shared, posted, or ‘Bluetoothed’ on current devices we
identi�ed that all camera phones have built in sharing mechanisms. In most
cases, these can be accessed from the contextual menu of a particular media item,
revealing a list of sharing options: Bluetooth, Email, Facebook, or Messaging.
To encapsulate our operative image, we wanted to present a similar option to
users called Face2Face and created a suitable icon (see Figure �g. 8). To keep
our probe simple and interpretatively
exible (Sengers & Gaver 2006), we
created a dummy application on an Android phone that hooks into the Android’s
built in sharing mechanism. As a consequence, the Share Face2Face probe was
displayed next to media sharing technologies such as Email, Bluetooth, and
Facebook, which we hoped would make users re
ect on how they currently
share media (Sengers et al. 2005). If indeed a piece of media needs to be shared
in the right-here-and-now, or if sharing it face-to-face later on might bring about
a di�erent experience, for instance by seeing the reaction of a friend’s face when

40

Figure 8: �e Share Face2Face probe.

they look at a photo or listening to a song together. While we intend to use this
probe on a larger scale, to �rst test out its feasibility we �rst went around the
university campus during lunchtime to informally interview 10 students.
We �rst showed them the concept, which we accessed through the phone’s

contextual share menu from an image we took earlier. �e Share Face2Face
concept immediately caught the imagination of the students we interviewed.
�ey talked about how face-to-face sharing of a photo is a di�erent experience
from Facebook: “facial expressions say more than likes.” But when queried about
how they might like to use such an application, their answers were characterised
by vagueness. In their view such an application would be useful in general, but
we only elicited a few speci�c scenarios, such as showing a picture of a
ower that
they saw on a recent hike to his friend , who is studying botany and might have
something interesting to say about it. Re
ecting on these results we realised that
we failed to consider how the probe only takes on speci�c meanings in relation
to speci�c images, evoking speci�c feelings. Clicking on the Face2Face sharing
option can be seen as lodging an intent to share this media item face-to-face.
�is reminded us of Suchman’s theory of Plans & Situated Action – commonly
misinterpreted as a theory of only situated action, neglecting the important
imaginary and discursive practice of planning (Suchman 2007). It is through
planning that we project into the future and imagine how things might be. Such
sharing intents – or plans – are an important resource within the situated action
or practice of face-to-face image sharing. Lucy Suchman was also one of the
�rst researchers within hci to take the machine seriously as a companion to
an interaction that goes beyond questioning if a machine is like a human to
consider speci�c sociomaterial assemblages, the forms of invocation available to
them, and their evocative e�ects (2007, 282). �is suggests a discourse exploring
the relationship between plans and situated action; how do these sharing intents
relate to, and might be useful within, face-to-face encounters?

4.6 interrogating the sharing interface

It is, however, di�cult to implement a system that explores such a temporally
extended discourse using the sharing interface of current mobile platforms. As
we saw in the chapter 2, the digital content that such interfaces make available
are ephemeral; intended to be handled as soon as possible. Such interfaces are
incongruent with practices that emphasise collecting and face-to-face showing.
But before we dive back down into the world of system design to, for instance,
engineer a workaround to this incongruence, let us �rst (re-)consider some
existing practices surrounding mobile media sharing in general, and face-to-face
sharing speci�cally.

41

4.6.1 Re-considering existing practices

Up to now, we have mostly been looking at studies of mobile media use in
Europe &North America. Walton et al’s (2012) study of proximate media sharing
practices by young people in Khayelitsha3 presents us with an interesting point of
departure. In this context and particularly among young users, “phones are o�en
semi-pubic shared resources” (Walton et al. 2012, 403). �is statement deserves
some unpacking. Imagine if all the stu� that is stored on your phone is shared by
default; always accessible to friends and family members, even if technically the
devices is yours. Social display, relationship-building, and deference to authority,
all play important roles in such proximate forms of sharing and help explain
why “collocated phone use trumped online sharing” (Walton et al. 2012, 403),
especially in a context where airtime and mobile data are expensive. Walton
et al., therefore, characterise the mobile phone as a kind of “public personae,
similar to social media ‘pro�les’ ” (2012, 403).
How very di�erent these practices seem! �ey certainly don’t resonate with

how we think of sharing interfaces and interactions on current mobile devices.
However, there are considerable overlaps between the study conducted by Wal-
ton et al. (2012) and Taylor & Harper’s (2003) study of texting and mobile phone
sharing practices of English teenagers. In their study, Taylor & Harper speak not
only of localised interactions, whereby “the phone can be passed between those
members of a group without the need for formal acts of o�ering or acceptance”
(2003, 275), but also demonstrate how phones “give young people something
to talk about amongst themselves” (2003, 280). By showing each other their
messages, they are “not only o�ering each other the concrete, but also an intan-
gible show of trust and loyalty” (Taylor & Harper 2003, 280). Certainly the
emergence of the cloud and a proliferation of social networking sites have shi�ed
some sharing practices, as well as enabled a whole range of new ones. Taylor &
Harper’s study, however, remains relevant and poetically demonstrates overlaps
with how young people in Khayelitsha share media, because such acts of shar-
ing “are a manifestation and a re
ection of deeply rooted needs in [teenager’s]
social relationships, needs that have to do with systems of reciprocity and social
solidarity” (2003, 268).
�e smartphone did not feature in either of these two studies, but the deeply

rooted needs and values that are articulated through collocated sharing practices
remain salient. Smartphones aren’t just technical means for communication, but
also a resource to make conversation. We can incorporate images and videos,
messages and music stored on, or accessed through, the device to chat with
absent others, for instance using WhatsApp4, just as we can incorporate as well
as tra�ck5 those media to draw in the people that surround us. It is, however,
in this later regard that smartphones o�er little improvements over the feature-
phones or so-called dumb-phones that came before them. For we continue to
speak of and treat the smart-phone as a deeply personal device. When we speak
of the smart-phone as a social device, we generally refer to the myriad of social
networks it connects to that are enabled by the cloud computing paradigm. In
short, what makes the smart-phone ‘smart’ and social is that it can act as a portal
into the cloud.
�e Cloud computing paradigm and the range of social networks it enables

�nds its parallel in the Durkheimian paradigm of sociology, which posits a
collective consciousness that is elevated and therefore also divorced from people’s
mutual involvement in their everyday practical activities6. Such a Durkheimian
perspective, where ritual expressions become super-ordinate modes of existence,
has also been applied to the study of mobile communication, most famously by

3. Khayelitsha is the largest township – or informal settlement – in Cape Town.
4. on this point see also O’Hara et al. (2014, 1133)
5. see Harper et al. (2007)
6. on this point see Ingold (2000, 196)

42

Figure 9: Screenshots from S60 device receiving a �le. Image Source: (Harper
et al. 2007)

Rich Ling (2008). Coincidentally it was none-other than Marcel Mauss ([1950]
2000), a student of Durkheim’s, that “dealt a blow to the entire Durkheimian
paradigm from which it never fully recovered” (Ingold 2015, 10). For what
Mauss had rediscovered was what our distant predecessors already knew: that
“our lives are bound or drawn together as literally as two hands clasping”; and that
“through the gi� [. . .] – I amwith you in your thoughts – and in your counter-gi�,
you are with me in mine” (Ingold 2015, 10-11). �erefore it does not matter
if our everyday practical activities, or the materials we draw on during these
activities, are physical or digital, it is these everyday acts that make us into social
beings.
Contemporary ‘smart’-phones miss precisely this point by assuming a single

user whose social interactions are carried over wireless networks and subse-
quently mediated by social networks. Rainie & Wellman (2012) call this phe-
nomenon ‘networked individualism’. Where such networks are inaccessible,
unreliable, or una�ordable, as Walton et al.‘s (2012) study illustrates, people
make due by swapping memory cards or sending media by bluetooth. Harper et
al. (2007) have labeled such co-located mobile media sharing practices ’tra�ck-
ing’.
Compared to feature-phones, contemporary smart-phones o�er few improve-

ments to support these practices. In some cases the opposite is true. On Symbian
S60, the os that runs on older Nokia phones, bluetooth �le transfers are sur-
faced as part of the messaging interface, as can be seen in �g. 9. By making
incoming media accessible and thus also visible, such an interface a�ords a more
conversational engagement with the media. On S60, it is also possible to stay
permanently discoverable to make receiving �les easier. Further still, by setting a
device as permanently discoverable the device name (e.g. ‘Nokia 6216’) becomes
a kind of status message that other people can read as they scan for bluetooth
devices. �e “Bluetooth Users Against Bush” campaign made use of this fact by
encouraging participants to set their devices as discoverable and to customize
their bluetooth device names to “Blu2th Against Bush”, thereby creating a subtle
way for participants to show solidarity and discover nearby people that align
with the anti-Bush movement (Bluetooth Users Against Bush 2004).
Such ‘tra�cking’ practices are no longer as well supported on more modern

Operating Systems, such as Android or Windows Phone. For instance, these
devices need to be explicitly set as discoverable and only remain so for a short
duration (on Android) or while the user is on the bluetooth screen of the settings
app (on WP). And while a user is presented with a dialog to accept incoming
photo �le transfer requests, the incoming �le isn’t surfaced to the user once it
has been received, but is instead �led away in the ‘bluetooth’ folder on Android
and in the ‘Saved Pictures’ album onWindows Phone. �e received media is not
at hand, and thus, doesn’t a�ord the same types of engagements as those that are
surfaced through messaging interfaces.
�e above discussions on the technical means and obstacles to tra�cking

content are, of course, only one side of the coin. Whether users are showing or
Bluetoothing a photo, as Harper et al’s study alerts us, they need to do so with
�nesse: sending or showing “something dull or in poor taste would indicate the
dullness or perversity of the sender” (2007, 254). We might say that choosing
what to share is crucially important. However for the adolescents in Khayelitsha,
where mobile devices are o�en semi-public, �gure and ground are sometimes

43

Figure 10: Screenshot of Android device receiving a �le

reversed. As Walton et al. reveal, the adolescents would delete, try to hide, or
password protect content that they perceived as too private to share, and would
at the same time try to display “certain content more prominently if they felt
it might enhance their status” (2012, 409). Absence is “the necessary Other to
presence” (Law 2004, 157) – a truism that has important implications for the
design of systems to support co-located media sharing practices.

4.7 designing & implementing a co-present
photo gallery

With Share Face2Face, we tried to sketch a system to provoke users to re
ect on
how they share media and to facilitate face-to-face sharing of such media. While
testing the feasibility of the concept, we found that the sharing interface does
not adequately support the temporally extended nature, or asynchronicity, of
such an interaction. We also found that the usage scenarios envisioned for Share
Face2Face were generally vague, while the sharing interface is generally used to
share speci�c content with speci�c apps or people. Co-located sharing practices,
as we have seen above, are generally the opposite, namely messy. In our designs
and sketches thus far (‘Gi�’ and ‘Share Face2Face’) our questions have largely
revolved around understanding and extending the sharing interface. However,
the studies we considered above demonstrate how people use the phone itself
and the content stored on it to make conversation. O�en the sharing interface
plays no role during such encounters. It is all done through the screen and
speakers.
As I look over the photos I took during the last couple of weeks on my phone I

see: some photos I took during a workshop I attended; some photos of a�ection
that I sent to my girlfriend who is traveling; and some I took with friends at a
pub while we celebrated my birthday; and one photo I took of an empty bag of
co�ee to remind myself which roast I liked. �umbnails of all of these photos
�t within one screen on my phone. While I would be happy to show and share
the photos I took during the workshop and while celebrating my birthday, the
ones I sent to my girlfriend are too private to share, and the one of the co�ee
bag seems too mundane to share.
To return to the terminology we adopted earlier, one of the main implications

of a device that functions in both front and back stage regions, like the mobile, is
that maintaining the device in co-present situations can be problematic. I would
quickly run into trouble if I wanted to show the birthday and workshop photos
to a co-present friend. Since photos are displayed chronologically on the gallery,
the act of going through these photos together or passing the phone around to
people in a group could easily become uncomfortable. Swiping too far and I
would no longer be pictured as being jovial with friends, but a�ectionate with a

44

loved-one or as a rather mundane co�ee snob. Alternatively, I could show the
photos one-by-one, but such a presentation is hardly compelling.
Drawing primarily on the studies of existing co-located sharing practices and

relating these to the above scenario, we sketched a proposal for a gallery app,
where facilities for co-located sharing are built into the app. �e vagueness that
characterised the responses during preliminary Share Face2Face interviews, lead
us towards interfaces that support tagging of photos into three general categories:

1. to share and make public
2. to keep private
3. to ignore-for-now and let dri� into the background

When co-present users should then quickly be able to frontstage and display
photos from any category. To create such a system, we �rst implemented an
app that mimics the built-in gallery. As the app we envision doesn’t require
make use of the Operating System’s sharing interface, we decided to return
to Windows Phone 8 and implement an app that mimics the built-in gallery.
Once implemented, we extended this app with functionality and accompanying
interactions to quickly tag and frontstage tagged photos.

4.7.1 Mimicking the built-in gallery

OnWindows Phone 8 the MediaLibrary api, as we saw in section 2.4.5, allows
us to access photos and photo albums. In their recipe-driven approach towards
Windows Phone 8 programming, Lalonde & Totzke (2013) make use of precisely
this api to develop a gallery app. We based our app on their ‘recipe’, because it
shows how to integrate the MediaLibrary api into an app that follow a common
architectural design patterns for event-driven applications, namely mvvm (see
MSDN 2014)
Lalonde & Totzke’s app (2013, 163) consists of three types of pages:

• MainPage.xaml – to display the root picture albums
• AlbumGalleryPage.xaml – to display grid of thumbnail images
• ViewPicturePage.xaml – to display single image

�roughout these three page types, the app makes use of a single ViewModel,
appropriately called MainViewModel.cs, which is stored as static singleton by
the App.xaml.cs class and accessed by the above ui pages. �is ViewModel
interacts with the Models of the app, namely the Picture.cs and PictureAl-
bum.cs classes of the MediaLibrary api. �eMainViewModel has onemethod
– LoadData– and exposes four main properties:

• PhotoAlbums – An ObservableCollection of PictureAlbum that is pop-
ulated by the LoadData method and which contains the main albums of the
phone.

• CurrentAlbum – A PictureAlbum that keeps track of the album that a user
selects and also updates the CurrentAlbumPictures property when it is
changed.

• CurrentAlbumPictures – An ObservableCollection of Picture that re-

ects the pictures in the currently selected album; it is updated anytime a user
selects a new album.

• CurrentPicture – A Picture that is updated anytime a user selects a photo
to view.

45

MainPage.xaml is displayed when the app �rst launches. In the OnNavigat-
edTomethod of its code-behind �le7, it simply instantiates the MainViewModel
and calls its LoadData method. Keeping the code that lies directly behind a
ui page to a minimum is a typical practice when following the mvvm pattern.
�e ui of the page consist primarily of a LongListSelector. It is used to
display the list of albums that are stored on the phone, such as the Camera
Roll, Saved Pictures, and Sample Pictures albums. It does so by binding its
ItemsSource to the PhotoAlbums property of the MainViewModel, which
has been set to the list of albums stored on the phone by the LoadDatamethod
that was called above. Each item – in our case a PictureAlbum – is rendered by
a DataTemplate, which consists of an Image and two TextBlocks. �e Image
is bound to the Pictures[0] property of the PictureAlbum and therefore
displays a thumbnail of the album’s �rst picture8. �e TextBlocks are bound to
the Name and Pictures.Count properties of the PictureAlbum and therefore
display the album name and picture count of that particular album – e.g. Cam-
era Roll (Picture Count: 73) – next to a thumbnail of its �rst picture. �e user
can then scroll through and select an album. Upon selection the LongListSe-
lector SelectionChangedmethod of the page’s code-behind is called. �at
method �rst checks if the selection is valid and then sets the CurrentAlbum
property of the MainViewModel to the selected album and navigates to the
AlbumGalleryPage.
AlbumGalleryPage.xaml consists of two main ui components, a

TextBlock and a LongListSelector. �e TextBlock is bound to the Cur-
rentAlbum.Name property of MainViewModel, . �e LongListSelector is
used to display the list of pictures in the currently selected album. It does so
by binding its ItemsSource to MainViewModel’s CurrentAlbumPictures
property and uses a DataTemplate to render each item – in our case a
Picture – in a Grid layout. �is template consists of a single Image that
is bound to the item itself – in our case a Picture – and thus displays the
picture’s thumbnail9. On this page users can see and scroll through the
photos contained in a particular album, e.g. Camera Roll. From here they
can either navigate back to the previous page or select an individual photo.
Upon selection the LongListSelector SelectionChanged() method of
the page’s code-behind is called. �at method �rst checks if the selection is valid
and then sets the CurrentPicture property of the MainViewModel to the
selected album and navigates to the ViewPicturePage.
ViewPicturePage.xaml consists of twomain ui components, a TextBlock

and a Image. �e TextBlock is bound to the CurrentPicture.Name property
of the MainViewModel, while the Image is bound to the CurrentPicture
property10. On this page users can look at the picture they just selected and
navigate back to the previous page.
In their gallery app, Lalonde & Totzke (2013) have made heavy use of data

bindings. By leveraging these bindings the resulting code is both elegant and
concise11. With a Model consists of two classes, a single ViewModel with four
main properties, and three ui pages with minimal code-behind, we have created
an app that replicates most of the main functionality of the built-in gallery. In

7. wp8 ui pages consist of two components: the XAML markup of the ui and a code-behind
�le.
8. �is binding is achieved with the help of a Converter, which takes an Picture and a String

as parameters, and returns a BitmapImage. �e string is used to control the BitmapImage’s source
is set to the Picture’s GetThumbnail() or GetImage()methods, respectively.
9. �is binding is achieved with the help of a Converter, which takes an Picture and a String

as parameters, and returns a BitmapImage. �e string is used to control the BitmapImage’s source
is set to the Picture’s GetThumbnail() or GetImage()methods, respectively.
10. �is binding is achieved with the help of a Converter, which takes an Picture and a String

as parameters, and returns a BitmapImage. �e string is used to control the BitmapImage’s source
is set to the Picture’s GetThumbnail() or GetImage()methods, respectively.
11. if we disregard the boilerplate code that is part of any mobile mvvm app

46

world of programming such brevity is virtue (Oram & Wilson 2007, 488),
mostly because it is easier for programmers to scan and reason about the code.

4.7.2 Extending the built-in gallery app

Compared to the built-in gallery, the app that Lalonde & Totzke (2013) develop
in their ‘recipe’ is still rather rudimentary. It does not support common gestures
of the built-in gallery, namely:

• dragging or swiping to the next image.
• double tapping to zoom in and out of an image.
• pinching & dragging to zoom and pan an image.

Users have learned how to use these gestures to navigate and view their photos
with ease and �nesse. We therefore extended Lalonde & Totzke’s (2013) app,
following similar recipes, to support these gestures and so we can familiarise
ourselves with how such gesture interactions are implemented on Windows
Phone.
�e changes we had to make mostly focused on the ViewPicturePage

which we renamed PictureInAlbumPage. In the MainViewModel we deleted
the CurrentPicture property and instead created a CurrentPictureIndex
property. With this property it is still possible for a page to access what used to
be the CurrentPicture by using its index to access it from the CurrentAl-
bumPictures collection. On the page itself we changed the Image component
to a Pivot and bound its ItemsSource to the CurrentAlbumPictures and
set its DataTemplate to an Image, which in turn is bound to and displays an
individual image of that collection. �e Pivot control then listens for swiping ges-
tures and handles them appropriately by advancing to the next or previous image.
We also expanded the PictureInAlbumPage to listen and react to pinching
gestures using the Windows Phone Toolkit Library12. Each gesture is reported
back to the page in its code-behind �rst as start and stop events (e.g. Pinch-
Started) and then as a stream of delta values (e.g. PinchDelta). �ese delta
values, in turn, are processed and fed into a composite transformation that has
been attached to the image. �is transformation then scales and translates the
image. We used the same principles to listen for and react to double tap events
that zoom in to and out of an image.
Strictly speaking the gestures we added above don’t change the functionality

of the original system. Even on that rudimentary app, users could navigate
through their collection of and view individual photos. However, supporting
these gestures allows for users to navigate between and view their photos more
quickly and
uidly. With a simple swipe users can move from one photo to
the next, whereas on the rudimentary app users would need to go back to the
previous (album) page, �nd the thumbnail of the photo they just viewed, and
tap on the adjacent thumbnail.
Implementing and repeatably testing these touch gestures allowed us to gain

familiarity with how gesture support is implemented on Windows Phone 8, but
equally importantly we learned how certain gesture work together as systems
whereas others compete with one another. �is familiarity became an invalu-
able resource as we sketched out how to extend this gallery with features and
interactions to support co-located sharing practices.

4.7.3 Designing the co-present gallery

To design interactions to support co-present engagements with our gallery app,
we were inspired by how common gestures enable quick and
uid experiences.

12. https://github.com/Microso�Archive/WindowsPhoneToolkit

47

(a) Viewing a photo. (b) Zones appear when
beginning to drag a
photo vertically, or
double tapping the
photo.

(c) Dragging the photo
towards the upper
zone.

Figure 11: Co-present photo Gallery interaction.

Lucero et al likewise levered such gestures to support collaborative collocated
photosharing (Lucero et al. 2011). Tbl. 1 gives an overview of the types of
gestures Windows Phone supports.

Table 1: Common gestures used in Windows Phone

Gesture Description

Tap A �nger touches the screen and releases.
Double Tap A �nger taps the screen twice and then releases.
Hold A �nger touches the screen and brie
y holds in place.
Drag A �nger touches the screen and moves in any direction.
Flick A �nger drags across the screen and li�s up without stopping.
Pinch Two �ngers press on the screen and move around.

When viewing an individual photo, our extended gallery app already makes
use of the Drag and Flick gestures for navigating between photos as well as
the Double Tap and Pinch gestures for zooming. �is only leaves us with two
remaining touch gestures: Tap and Hold. �e pervasive Tap gesture already has
a well established usage pattern, namely to active ui elements such as Button
or thumbnail images. �e Hold gesture, on the other hand, is less established;
sometimes it used to bring up a context menu when users long-press on a ui
element. Drawing on our experience of adding gesture support to our gallery
app, we looked for opportunities to combine individual gestures into systems
of gestures. For instance, when a user zooms into an image, by using the Pinch
or Double Tap gesture, the Drag gesture no longer navigates to the next image,
but is used for panning the zoomed-in image. Only when the user zooms out
of the image again is the Drag gesture used for navigating to the next image.
Looking for similar opportunities to overload and combine individual gestures,
we noticed that the gesture used for navigating between images is a horizontal
Drag, meaning vertical Drag gestures wouldn’t interfere with navigation. On
paper we experimented with various sketches that use vertical dragging before
settling on the one shown in Fig 11.
When a user starts to drag the photo vertically, two semi-circular zones – one

green and one red – start to appear on the screen. �e green zone is used to tag
photos for sharing, while the red zone is used to tag them for keeping (private).
As the user drags the photo, a thumbnail of the current photo tracks the users
�nger and when that thumbnail enters the green (or red) zone, it is tinted green

48

(or red). Dropping the thumbnail in a zone tags the photo; the zones then fade
out again. Long-pressing on the photo also makes the zones visible. Only this
time the user can tap on them. �is �lters the collection and makes all photos
that haven’t been tagged through that zone invisible. For instance, when the user
taps on the bottom, red zone only photos that are marked for keeping (private)
are displayed.

4.7.4 Implementing the co-present Gallery

When we tried to implement the above system, we noticed that the horizon-
tal Drag gestures (for navigation) and the vertical Drag gestures (for tagging)
couldn’t be neatly di�erentiated from one another. On paper, we failed to con-
sider that users don’t swipe along perfectly straight horizontal (or vertical) lines!
Every horizontal drag, always has a residual vertical component and vice versa.
We tried to implement a threshold to account for this residual, but the built-in
Pivot component wouldn’t let us recon�gure how it responds to Drag events
beyond enabling or disabling them entirely. Instead we adapted the tagging
interaction to also make use of the Hold gesture, so the user �rst long-presses
on the image – this fades in the zones and tells the Pivot to ignore Drag events.
Just as before, the user can then drag the photo’s thumbnail into a zone to tag it.
Implementing this revised system, allowed us to better discriminate between
the horizontal and vertical Drag gestures, but in practice the tagging interaction
became cumbersome and slow. �e Hold gesture, used to activate the tagging
system, takes a whole second to �re. In contrast, swiping to the next or previous
image only takes a fraction of a second. So if a user wants to tag 15 images, they
need to long-press on 15 di�erent images for a second each. We experimented
with other gestures for activating the tagging system. �e quickest and most
reliable of these is an interaction whereby users double taps on the image, but
upon the second tap they don’t li� their �nger again. Instead they continue
and drag the image towards one of the zones, which are already fading in. By
combining the Double Tap and Drag gestures in this way the resulting systems
for tagging photos in almost as quick and
uid as the gestures used for swiping
between images.

4.8 discussion & outlook

Design, as Ingold notes, extends into making (2013, 70). �is certainly resonates
with our experience of designing and implementing/making our co-present
photo gallery. By replicating how gestures are used in built-in apps, and continu-
ally testing the resulting app on a real device, we could understand the use of
gestures more deeply and draw on those understandings to design the tagging
system of our co-present gallery. While the resulting system was certainly in-

uenced by how we sketched out our idea on paper, it didn’t correspond with
that idea exactly. �is is why Ingold argues that we should look towards cooking
and gardening, instead of architecture, for our models of design, because both
gardeners and chefs don’t just see the ways things currently are, but also where
they are going (2013, 70). By also responding to where things are going, the
relationship between design and making can no longer be found in connecting
a pre-conceived idea to an object. Instead the relationship goes between idea
and object, “following and reconciling the inclinations of alternately pliable and
recalcitrant materials” (Ingold 2013, 70). Even thought the gesture system on
Windows Phone is documented as an api, in practice it also becomes a design
material. We learn about such materials – or any material for that matter – more
deeply by engaging with them to discover and respond to the ways in which they
are pliable and in which they are recalcitrant.

49

Just as design materials participate in a design process, so too do the theories
and studies of existing practices we consider and integrate. In this chapter we
have learned how co-located or any type of social interactions are characterised
by their ordinariness (Dourish 2004); we take them for granted. �ese interac-
tions are enmeshed with unwritten rules, feelings, expectations, anxieties, and
experiences (Goffman 1959; Hall 1966). So, we drew upon theory to develop
analytical lenses and sensitise ourselves to key practices, sometimes rendering
these visible to us in the �rst place. We have characterised this approach as a
constant, yet productive and generative site of struggle that depends on one
pervasively misunderstood activity: reading (Ingold 2007). When we speak
of reading we see it as an act of habitation rather than consumption. Just like a
renter furnishing her apartment with objects, acts, and memories, by continually
engaging with (or reading) theoretical texts at di�erent stages of our research,
we have made these texts our own. We used analytical lenses derived and re�ned
through reading to understand and critique approaches and conceptual founda-
tions of related work including our own. �ese understandings showed us that
�rst and foremost we needed a better way to think about co-located interactions
on mobile devices. By interrelating theories we uncovered that such interactions
are situated primarily in a social ecology with devices, not in a device ecology
with people. Our dialogic engagement with theory allowed us to develop such
grounding principles. We have identi�ed two design spaces Share Face2Face and
the Co-present Gallery, and have begun to explore them through the process
of design, which so far has di�ered from more traditional user-centred design
(UCD) processes.
In his widely cited paper on context, Dourish notes that if we are to sensitise

ourselves to di�erent disciplinary orientations on profound concepts such as
context, identity, and communication, this not only implies “a change to the
ways in which we go about designing technologies, but also a change to the
technologies that we design” (Dourish 2004, 28). �is is more than a change in
process, because the results of a PD or UCD process can still be stable, static, and
closed (Dourish 2004). It was a�er all “a circularmove of writing a cognitivist ra-
tionality onto machines and then claiming their status as models for the humans”
(Suchman 2007, p.259) – a view that is not only prevalent in academic but also
in everyday discourses. While we �rmly believe in the philosophies of PD and
UCD, in practice we have so far not adhered to them. �e discussions presented
thus far characterise a di�erent, �rst step that doesn’t �t into traditional models
of UCD. We call it trying to understand. In our account, we have articulated
– sometimes explicitly and other times deliberately implicitly – this theory on
design (Zimmerman et al. 2010) in the process of uncovering implications for
the design of co-located interactions. If we take design seriously as a method of
research, this should happen in parallel. We aren’t saying that all research should
engage with theory in such a manner, but it was a fruitful approach for us, and is
an emerging trend in hci (Rogers 2012). We also believe that it is an approach
that could bene�t other research that latches onto more tacit aspects of our
everyday lives. �is is why we report and interrelate them here, because theory
on designmakes more sense in relation to speci�c design problems (Gaver 2012).
To develop research through design as a methodology and to hold ourselves
accountable to the decisions we, while struggling with, nevertheless made, we
respond to Zimmerman et al.’s call to action by documenting the whole process,
showing “how theories from other disciplines were integrated” and beginning
with the crucial �rst step: problem framing (Zimmerman et al. 2010, p.316). But
further than theory on design, we hope that our discussions, interpretations
of theory in relation to co-located interactions, probes, and technology experi-
ments surrounding the probes, will serve as placeholders that open a new and
fruitful design space: the space of co-located interactions that �t primarily into
our social ecologies and not just our device ecologies.

50

4.9 looking back & moving forward

Looking back over the prototypes and probes we explored and implemented to
this point, we have gained an understanding of the material realities of informa-
tion that is stored on the mobile phone and discovered that human practices of
gi�ing and co-present sharing are incongruent with the speci�c ways in which
information is passed through the mobile’s sharing interface. While it may be
possible to engineer apps that workaround this incongruence, we are hesitant to
do so, because such workarounds o�en result in fragile apps. If the woodworker
fails to account for the direction of the grain of the wood they are working with,
the chair they build will not be strong. A similar conclusion lead us to abandon
expanding the Share Face2Face probe. So we shi�ed the problem from sharing to
presentation, from the sharing interface to the Gallery app. While our co-present
Gallery might provide better mechanisms for us to manage and present our stu�
(and ourselves in the process) to those around us, the impasse we reached earlier
still concerns us.
As chance would have it just as we shi�ed our inquiry from the mobile sharing

interface to its Gallery, Microso� announced major architectural changes to the
Windows Phone platform that re-introduced the �le as a major component of
the platform, its datastore, and its sharing interface. �is presented a challenging
moment for our inquiry: a point of departure, so to speak. Do we keep the object
of our study – Windows Phone 8 – consistent and ignore these changes to the
underlying platform? Or do we study these changes and integrate them into our
inquiry? We certainly felt validated: however mundane or anachronistic the �le
may seem in our contemporary landscape of computing that is dominated by
the cloud and the mobile, it still serves many important purposes, as we saw
in chapter 2. A�er much deliberation we decided that it would be reckless to
ignore these developments for the sake of consistency. But we also felt that we
would be doing our inquiry a disservice to not engage with our deeper concerns.
Asking a simple question – does Windows Phone 8 support gi�ing? – got us to
this point. Before we ask the same of Windows Phone 8.1, we need to pause and
re
ect if this is still the most pertinent question we should be asking. Perhaps our
concerns and dissatisfactions we developed through our practical and critical
engagement with the platform show that we are not putting our question marks
deep down enough.

5 interlude

5.1 introduction

It was Paul Dourish (2014) who alerted us to the fact that inquiries into the mate-
rialities of information are best conducted at moments when such materialities
are in
ux. In the previous chapters we have seen how contemporary mobile
platforms are moving away from the notion of a �le: almost entirely on wp8
and on Android by homogenising cloud storage with local storage. In this brief
interlude, we consider the convergence of pc and mobile operating systems by
looking at the changes introduced by the Windows 8.1 (w8.1) and Windows
Phone 8.1 (wp8.1) operating systems.
A release with a minor version number typically indicates that only small

changes have been made. For the wp8.1 ui this is certainly true. From the users
perspective the release is almost indistinguishable from wp8, save for a few new
features that were added. But under the hood wp8.1 is a major architectural
landmark, because it incorporates the Windows Runtime (WinRT). �is means
that for the �rst time Windows and Windows Phone Operating Systems share
a runtime, which enables a number of other shared features. For instance, W8
and wp8.1 share the same .NET subset and have an identical app model and app
lifecycle (starting, pausing, resuming, stopping), and there remain only few ui
widgets and APIs that are speci�c to either wp8.1 or w8.1. When people speak
about the convergence of devices (from phones, phablets, tablets, and ultra-book
laptops), this shared runtime and code base is what we might refer to as material
evidence of such convergence. �e w8.1 and wp8.1 releases are also the product
of a restructuring within Microso�. Whereas before there were separate teams
responsible for developing Windows for every device it runs on – PCs, Servers,
tablets, gaming consoles and phones – the newly created os division within
Microso� is responsible for all operating systems: fromWindows Phone all the
way to Windows Server. Looking back, the technology journalist Peter Bright,
sees Windows andWindows Phone 8.1 as a critical component to realising its
vision of a shared core operating system that “can span hardware from little
embedded Internet of �ings devices to games consoles to PCs to cloud-scale
server farms” (2016, 3). Because the material properties of this core operating
a�ects potentially millions of users and devices, it is worth investigating it in
more detail.
At Microso�’s build2014 conference, where wp8.1 and the shared APIs it

supports were introduced in detail, a few ‘new’ features of the wp8.1 platform
garnered applause from developers: the re-emergence of the �le as a central
component of the new sharing contract speci�cally and of system design more
generally. �ese architectural changes also enabled Microso� to launch a �le
manger app called Files. Before we dive into the technical details of the ar-
chitectural changes introduced with wp8.1, let us �rst examine just how users
experience these changes by considering, as a case study, the Files app.

5.2 examining the windows phone 8.1 file man-
ager

As can be seen in �g. 12 the app is one of the more popular ones on theWindows
Phone app store and has received overwhelmingly positive reviews from which
we can gather that its not just developers who applauded the re-emergence of

51

52

Figure 12: �eWindows Phone File Manager: Files

the �le, but that for users too being able to manage their stu� remains of central
concern.
�e purpose of the Files app is to give users direct access and control over the

�les stored in a few common folders on both their phones internal and external
storage, namely:

• Documents
• Downloads
• Music
• Pictures
• Ringtones
• Videos

One way users can act on the �les stored in those folders is by long-pressing
on them. Fig. 13a shows the menu that pops up a�er long-pressing on a photo
�le stored in the user’s camera roll folder, a subfolder of the pictures folder of
the sd card. Looking at the options in this menu we can see that the Files app,
by virtue of the APIs it calls on, reproduces the familiar grammars of actions
from the pc – delete, rename, move to, and copy to. But we also see that Files
has expanded on this traditional grammar with a new action: share. �is action,
along with a few others, has been deemed so important that when a user presses,
instead of long-presses, on a photo �le, not only are the traditional actions no
longer accessible, but share is displayed most prominently along side a range of
other, new actions. When a user presses this share icon (�g. 13b), for instance to
email a �le, they are presented with a list of apps, and a�er they choose Email
(�g. 13c) the photo is attached to an email dra� (�g. 13d).
�is interaction is similar to what is o�en called the ‘sharing experience’ on

Android and wp8. But if we look more closely at the screenshots and dig a little
deeper into the way ‘share’ is operationalised on wp8.1 we notice a few subtleties.
For instance once the user presses the ‘share’ button, Files �rst saves a copy of the
�le to the ‘Saved Pictures’ folder, as can be seen in the top le� corner of �g. 13b.
Only a�er this copy operation completes, is the user prompted to choose an app
they wish to share the �le with. Although, strictly speaking they aren’t sharing
the �le they were looking at, in our case:
D:\Pictures\Camera Roll\WP 2015 02 15 13 54 44 Pro.jpg

Instead they are sharing a copy of that �le, which has been stored in the ‘Saved
Pictures’ folder, in our case:
D:\Pictures\Saved Pictures\WP 2015 02 15 13 54 44 Pro(1).jpg

And if we compare the �le sizes between the original �le stored in the camera
roll folder of �g. 13a (1.96 mb) with the photo that is ultimately attached to the
email of �g. 13d (485 kb), we can tell that the email app has further resized and
probably also compressed the photo. �is is not a bad thing per se, especially in
South Africa, where the photo was taken and subsequently shared, mobile data
costs are high. So I was happy to only have to pay for roughly a quarter of the
data costs to email the photo to my family to show them some penguins I saw.

53

(a) Standard grammar
of action.

(b) Expanded grammar
of action – share.

(c) List of “share
targets.”

(d) Emailing the �le.

Figure 13: Emailing a �le.

54

(a) Viewing a �le. (b) Expanded grammar
of action – favorite.

(c) A favorited �le. (d) Revisiting a
previously favorited
�le.

Figure 14: Favoriting a �le.

To summarise, it might seem to the user that they are emailing a photo �le, but
they are instead emailing a resized and compressed copy of a copy of a photo �le.
�ese resizing and compressing operations can also lead to problems, for

instance when I emailed the photo a second time, not only did this result in
a second copy stored in the ’Saved Pictures folder, but my intention was also
di�erent this time. I was responding to a request of a friend. Because the camera
on my phone was better than his, he wanted to have the photo to include in an
album he intended to make to commemorate his visit. I was unable to email him
the original uncompressed version that would be better suited to printing.
Unpacking this simple scenario we can conclude that the grammar of ‘share’ is

predicated on the grammar of ‘copy’ and o�en results in the creation of multiple
copies, one in the ‘Saved Pictures’ folder and any subsequent copies apps might
create of the �le. In the case of the email app, it saves a resized and compressed
copy of the photo �le in its sent emails folder. �e copy stored in the ‘Saved
Pictures’ folder is especially problematic if we look at the grammar of favouriting.
Favorite is part of the expanded grammar of action that the Files app has

brought to wp8.1. It is an action that has been imported from the web, where
it is used to designate one or a couple of items as favourites from a collection
that might encompass many items. Items that have been marked as favourites
are o�en made more visible and can be accessed quicker than other items. In
�g. 14 we break down the interaction of favouriting a �le. We begin with (�g. 14a)
viewing a photo �le in the camera roll. Next (�g. 14b) we press the favourite
button. �is results in the button being greyed-out (�g. 14c), which indicates
to the user that the photo �le has been successfully favourited. �is marking,
however, is ephemeral and only lasts as long as we are viewing the photo �le.

55

Figure 15: �e resulting muddle in the ‘Saved Pictures’ folder.

For should we revisit the photo �le at some later point, as we do in �g. 14d, the
button is no longer greyed-out. If we look more closely at �g. 14b we can see
that while we are marking a �le as favourite, the Files app is creating a copy of
the �le and saving it in the ‘Saved Pictures’ folder. �us, favouriting does not
attach a tag to the photo, nor can it be considered an attribute of an object. In
the Files app a favourited photo �le is marked as thus by virtue of its location,
when a copy gets placed in the ‘Saved Pictures’ folder. A choice that might seem
understandable on its own, but quickly becomes inexplicable if we consider that
the ‘Saved Pictures’ folder, as can be seen in �g. 15, already contains copies of
multiple other �les, for instance the ones we emailed earlier and that we might
very well not consider a favorite.
Despite the proliferation of copies and resulting muddle in the saved pictures

folder, the Files app empowers users by granting them direct access and control
over their stu�. But users still don’t have direct access to all of their stu�, rather
a subset of their stu� that is stored in a few common folders, such as Pictures
and Videos. �is is precisely the point that the user ‘J’ points out in her review of
the Files app (see, Microsoft 2014), a review that 12 other users found helpful:

It works �ne, but it isn’t really a �le explorer. It’s one place to �nd
pictures, videos, downloads, and documents but it doesn’t show the
folder structure in the phone nor any apps or app created �les like
my recordings. It just isn’t what is says.

J is, of course, referring to the stu� – her stu� – that is stored in app sandboxes
and thus is not directly accessible. It is this topic, and the roles that �les play in
it, that we turn our attention to next.

5.3 the battle in the sandbox

What precisely are these “�les like my recordings” that J mentions and why can’t
she access them? Developers typically refer to data that users orient to in such as
way as ‘user data’. As the name already implies, it is data that somehow belongs
to the user. �e Windows Dev Center (2016) characterises user data as data that
users create and manage using an app, but that is “useful or meaningful to more
than one app” and that “the user wants to manipulate or transmit as an entity
independent of the app itself ”. Further, user data is di�erentiated from app data,
which is data that an app creates and manages itself: user preferences, reference
content, and runtime state. Using the above nomenclature and applying it to the
gi�ing �ction we developed in the chapter 2, we would consider received gi�s as
a typical form of user data.
However it was only a�er much debate that we tentatively decided to store

received gi�s in the Pictures\ public storage directory. And this decision – to
store user data in a public folder – is far from standard practice, as illustrated by J’s
above comment. In fact, these debates and di�cult decisions are symptomatic of
the battle for control between apps and contemporary mobile operating systems.
�e wp8 and Android Operating Systems only reluctantly grant apps with

limited access to the user’s �les, typically in the form of a DataStream or opaque

56

Uri. In return apps are promised isolated storage, a sandboxed form of storage
where they are in total control. Due to these vastly di�erent forms of storage and
access models, if apps need access to a �le beyond the initial moment of sharing
they are forced to recreate it in their sandbox. wp8.1, however, allows some �les
to break free from their respective sandboxes. �is is achieved using the new
share contract and �le picker implementations. At the build2014 conference
developers applauded the announcement of these new features (Gallardo &
Singh 2014).

5.3.1 Examining the share contract & �le picker

A central aspect of the wp8.1 share contract is the DataTransferManger, an os
component that brokers data from one application sandbox to another. Using the
DataTransferManager an app that wants to, for instance, share one or more
photos stored in its sandbox can bundle that data – principally consisting of a
list of StorageFile items – into a DataPackage, pass it to the DataTrans-
ferManager, and request that the share ui be shown to the user. �e os then
prompts the user to select an app they want to share that content with. �is
app is referred to as the share target. Next the os launches1 the share target app
and passes it a ShareTargetActivatedEventArgs parameter that contains
a DataPackageView. From here the share target can access the �le references
the sharing app passed into the corresponding DataPackage that it created.

�e share contract

To examine the properties of this share contract and the brokering role the os
plays within it more closely, we can create an app – let’s call it ‘Share Inspector’ –
and register it as a share target for *.jpg and *.png image �les and share with it
an image from the phone’s camera roll. In the context of this example the camera
roll folder, and all common folders for that matter, are e�ectively sandboxed,
because if an app doesn’t request in its manifest special permission to access
common folders those folders and the �les they contain are inaccessible to that
app, and thus, de-facto sandboxed from it.
If we inspect the properties and attributes of the StorageFile that arrives at

the share target, we notice that it has been designated Read-Only | Archive.
And if we try and re-access the �le during a future launch of the app an exception
is thrown to indicate that the app is no longer allowed to access that �le. So we
would not be able to implement our gi�ing scenario of chapter 2 using the share
contract. Further still, the share target is obliged to report the share operation as
completed and during the BUILD 2014 conference Gallardo & Singh (2014)
strongly encouraged developers to do so promptly. Upon reporting the operation
as completed, the share target app – ‘Share Inspector’ – is closed and the user is
returned to the sharing app. While it is possible to pass a, so-called QuickLink
parameter2 to the ReportCompleted()method, this parameter is ignored on
wp8.1. Taking these insights together we can conclude that the purpose of the
share contract is not to enable a discourse between apps and stu� that is stored
within their sandboxes, but to quickly post stu� online or to send it as part of a
message or email.

�e �le picker

�rough the share contract, as we have seen above, it is possible for one app
to temporarily pass a �le reference to another. �e �le picker, on the other

1. or resumes if it is already running
2. A QuickLink is designed to facilitate sharing to familiar destinations within an app on

W8. For instance, when a QuickLink to ‘Email Mom’ is returned a�er sharing an subsequently
emailing a photo to Mom, the ‘Email Mom’ QuickLink is listed at the top of the share target list,
above the more general Email app.

57

hand, allows one app to reach into another’s sandbox to obtain access to one or
more of its �les. �e former action is one of receiving, the later one of choosing.
By choosing a �le, rather than having it shared with it, the app is freed from
the constraint of having to complete the share operation as soon as possible.
However, the �le reference it obtains is again restricted to read-only operations
and expires once the app closes.

5.3.2 Discussion

Since in both of the above approaches towards sharing data the receiving app is
only getting a �le reference, data does not have to be duplicated and the share
operation is not restricted to any size limits. �is is at least the conclusion that
Gallardo & Singh (2014) come to at BUILD 2014. However, the nature of the �le
references that an app ends up with are such that they either enable a limited, but
common set of scenarios – to post, message, and email the �le – or they force
apps to recreate �les in their own sandboxes.
With the well received �le manager Files that Microso� introduced with

wp8.1 users are empowered with direct access and more control over their stu�.
However, examining this �le manager and the new sharing contract in more
detail, we must note that users are at the same time disempowered through a
proliferation of copies. Sharing a photo from the Files app creates at least one
and o�en further �le copies: one that is always stored in the ‘Saved Pictures’
folder and another that o�en resides in the receiving apps’ sandbox.
�ese copies are a symptom of the battle for control over user data between

apps and the os. While the os plays a brokering role to grant access to �les
outside an apps’ sandbox, including those stored in common folders such as
Pictures or Videos, the limited and temporary nature of that access is of
consequence. For many apps, such access is too limited. �ey opt instead to
keep user data, or shared and subsequently re-created copies of that data, in their
sandboxes instead. �e os, however, has promised apps isolated, sandboxed
storage in return for limited access outside of such sandboxes. �erefore much
user data remains opaque to the user – hidden behind apps and outside of their,
as well as the os’ direct control.

5.4 taking back control

Fortunately wp8.1 introduces a third, less pervasive, mechanism to excerpt
control over user data: the KnownFolders storage library. �is is the same api
that theWindows Phone 8.1 FileManager itself uses to gain direct, programmatic
access to “common locations that contain user content”3. As this is a powerful api
with big privacy implications a corresponding capability must �rst be enabled in
the app manifest �le in order to use the api. �e snippet in lst. 5.1 illustrates a
basic usage scenario.
An important di�erence between the StorageFile references we obtain in

lst. 5.1 and the one we obtain through the Filepicker of chapter 2, is that the
references obtained through the KnownFolders library can be reobtained even
if the app is restarted and that full access is granted. �at is, it is possible to move,
rename, or delete any �le or subfolder contained within the pictures folder rather
than just read from the �le or to create a copy.

5.4.1 �eMyStu� �le manager & datastore

Wewill not bore the reader with the details at this stage, but started to implement
our own �le manager, which we callMy Stu�, using the mvvm – Model-View-

3. https://docs.microso�.com/en-us/uwp/api/windows.storage.storagefolder

58

Listing 5.1 Enumerating the �les in the user’s Picture Folder
using Windows.Storage;

using Windows.Storage.Search;

using System.Threading.Tasks;

using System.Diagnostics;

// Get the user’s Pictures folder.

StorageFolder picturesFolder = KnownFolders.PicturesLibrary;

// Get the list of files in the current folder

IReadOnlyList<StorageFile> files = await picturesFolder.GetFilesAsync();

// Iterate over the results and print the list of files

// to the Visual Studio Output window.

foreach (StorageFile file in files)

Debug.WriteLine(file.Name);

ViewModel – so�ware design pattern that facilitates a clean, testable separation
of concern between user interface and the application logic (MSDN 2014). Much
like the Files app we discussed above, we began by replicating its basic function-
ality through the foundational grammar of action – move, copy, delete, rename –
exposed through the KnownFolders api.
While we turn towards expanding this foundational grammar in chapter 6, it is

worth pausing and noting here that for the �rst time in our research undertaking
we felt we have arrived at a point where we were tackling the problem at a
su�cient scale. Rather than concerning ourselves with the design of better user
interfaces, or �ghting with recalcitrant mobile materialities of information, we
could now prototype a mobile datastore to reimagine the relationship between
the os, its datastore, and interfaces for acting on and sharing the data stored
within it.

5.5 conclusion

Even talking about �les and mobiles, as we have done in this interluding chapter,
and in lieu of the rich social practices we learned about in previous chapter creates
a strange juxtaposition. Files seem outdated in our increasingly networked and
mobile lives. But the �le, however archaic and mundane it may appear in that
juxtaposition, remains of central concern to system design. Attempts to re-
surface �les on wp8.1 are, in a word, muddled. In this chapter we have attributed
this muddle to a new button and underlying grammar of action that pervades
our mobile lives: share. A second, major contributing factor is that the os has by
and large relinquished control over user data, creating proliferation of copies
that designers of earlier systems sought to avoid (Smith et al. 1982). But where
there is muddle, there is also opportunity for tidying. �eMy Stu� prototype
datastore provides us with precisely the platform to further our investigation.

6 interfacing with the cloud

6.1 introduction

When you put contemporary smartphones into airplane mode, the device con-
tinues to work, albeit in a somewhat limited fashion. �anks to its local datastore,
you can still
ick through your photos, check your calendar, listen to music, and
catch up on older email threads. When you deactivate airplane mode, perhaps
a�er a
ight, the device inevitably starts buzzing and beeping: new emails start
tumbling into your inbox, messages – have u landed? – start appearing, and you
are noti�ed that, for instance, eight people liked and three people commented
on the photo you posted before you took o�.
From an architectural standpoint this makes the mobile phone such a fasci-

nating device. In airplane mode, we can see that the mobile phone is more than
a portal to the Cloud. A�er all, we can still access the photos, music, videos, and
other �les that are important to us and that we keep on its local datastore. When
connected to the internet, on the other hand, the mobile phone tethers1 itself
to the Cloud and all the services and connections it o�ers: to friends, family,
or even strangers. It is as if the wind of communication is blowing through the
device that manifest itself in the form of messages, noti�cations, beeps, and
badges.
It is this ‘tethering’ that we turn our attention to in this chapter, for when

people say that the mobile is a personal device, they are referring to not only the
digital stu� that people keep in its local datastore, but also to the way the mobile
interfaces with the Cloud to support and re-present interpersonal relations. �is
dual characterisation of the mobile – as being both personal and interpersonal –
is both a driving force behind, and corollary of, the converging worlds of mobile,
social, and cloud computing. Consider for instance, the photo that was snapped
and posted to the Cloud before take-o�. On the mobile the photo is part of the
Gallery’s Camera Roll. In the Cloud, e.g. on Facebook, the photo becomes part
of Facebook’s social graph, where friends can view, like, share, and comment
on it. What are we to make of these photos? Are they still the same, or are they
di�erent but related in some other way? Looking at this scenario more closely,
we can develop important implications for the design of theMy Stu� datastore.
Speaking strictly technically, the two photos are not the same. While they may

have started as copies of one another, on route to Facebook’s social graph the
photo is resized and compressed and loses around 94% of the attributes (e.g. Date
Created/Modi�ed, EXIF metadata, etc) that are associated with the photo-�le
in the local datastore (see, Thereska et al. 2013, 7). Since these photo-�les are
technically distinct from one another, we could reason that these two photo-�les
loosely correspond to the above dual characterisation of the mobile – where one
photo is personal and the other is interpersonal/social. If, however, we’d also
emailed or messaged the �le to a family member, perhaps with an accompanying
messages – I’m coming home – the situation gets complicated even further. In
any case, alarm bells will be going o� in the mind of the astute reader, as we are
starting to transfer conclusions, derived from a technical2 comparison of �les
stored in di�erent places, to the meanings they embody for us personally and
socially. While the personal vs. interpersonal distinction helped us to develop

1. For instance push noti�cations are sent through a persistent socket connection between the
mobile and the cloud that is maintained/re-established through a combination of long-polling
and keep-alive messages.
2. I could go on to talk about information theory as a branch of mathematics here. A�er all,

as Dourish & Bell reminds us, information in the context of ubiquitous computing is a cultural
category (2011, 193)

59

60

an initial understanding of the multifaceted and fascinating nature of the mobile,
its usefulness is now waning.

6.1.1 From Files to Possessions

�ere is a nascent �eld of research within hci that studies how people experience
the stu� they keep on their personal devices3 and in the Cloud (Odom et al. 2011;
Odom et al. 2012; Harper et al. 2013; Lindley et al. 2013; Zhao & Lindley
2014; Odom et al. 2014). In our above example we have sometimes been using
the term File4 to refer to the photo. Odom et al., on the other hand, would
refer to such a photo as a digital possession (2012). Both terms are, of course,
referring to the same thing – the photo – but they di�er in the way they orient
us to that photo. �e former term – File – orients us to technical aspects of the
photo, allowing us to talk about where the photo is stored, how it is encoded,
and its name, size, and extended attributes. �e term digital possession, on the
other hand, orients us to the social and moral dimension of the photo, where
we might consider how people draw on their photos to communicate with their
friends and ultimately cra� their identities. Moving forward, we would do well
to integrate such orientations, so that we can approach our problem from a
perspective that balances technical with social and moral concerns. A�er all the
�les that users encounter on their mobiles5 are precisely those that people would
identify as their own: their photos and videos, music and podcasts, recordings
and ringtones, documents and contacts.

Developing a functional understanding of Files & Possessions

As disparate as these two orientations seem on the surface, they overlap in the
functional ways in which they approach their respective subject matters: Files
and Possessions. If we revisit their foundational book on Operating System
Concepts, Silberschatz et al. point out that “to de�ne a �le properly, we need to
consider the types of operations that can be performed on �les” (2013, 506).
In typical Computer Science fashion, the operations that can be performed

on �les are distilled to an essential and minimal set – the ‘general case’ – of �le
operations that an operating system needs to provide (Silberschatz et al. 2013,
506):

(1) Creating a �le.
(2) Writing a �le.
(3) Reading a �le.
(4) Repositioning within a �le, also known as a �le seek, enables a program to read

and write to di�erent parts of a �le.
(5) Deleting a �le, which releases all �le space as well as the directory entry.
(6) Truncating a �le, which resets the �le length to zero and releases all �le space

but keeps the directory entry.

Missing from this list are common actions that users might initiate on a �le,
such as copying and renaming (moving) a �le. However, such actions can be
re-written as combinations of the 6 primitive operations6. For instance to copy
a �le Source to the folder Destination, the Operating System �rst creates an

3. PCs and mobiles
4. In computer science a �le is a “named collection of related information that is recorded on

secondary storage” [. . .] and “is the smallest allotment of logical secondary storage; that is, data
cannot be written to secondary storage unless they are within a �le” (Silberschatz et al. 2013,
504).
5. Or that resurface as �les in di�erent locations, when for instance emailed.
6. Both the general case that consists of primitive operations and composing other operations

from these primitives are typical of functional approaches.

61

Figure 16: �e Downloads Folder

empty �le with the same name in the folder Destination and then reads from
the �le Source and writes to the newly created �le.
A similar functional understanding in the area of digital possessions is put

forward by Odom et al., who argue that “possession is at once a noun for a type
of object (physical or virtual) and a verb that labels ways of treating things” (2012,
782). Researchers are unpacking these ‘ways of treating things’, but concede that
possessing something digital: not only emerges through use (Zhao & Lindley
2014) and is o�en grounded in our understandings of physical possessions
(see, Odom et al. 2012, 788), but is ultimately complicated substantially or even
undermined when our digital possessions are stored in the Cloud (Odom et
al. 2014). We ally ourselves to researchers who have pursued such lines of inquiry,
and extend it by expanding its empirical focus to the mobile and how it interfaces
with the cloud to explore how mobile/cloud architectures can support such
notions of digital possessions.

Files & Possessions on the Desktop

Before we consider these complications in relation to the mobile, it is worth
pausing for a moment to look at the place where �les seem ‘at home’— on the
Desktop, where “the �le system is the most visible aspect of an operating system”
(Silberschatz et al. 2013, 503). Ever since Xerox designed the user interface to its
revolutionary Star computer around the Desktop metaphor, digital objects have
not only gained pictorial representations – icons – but users have also learned
to think of their digital objects in physical terms – that they have a location
(the Desktop or a Folder) and can be selected, dragged, and dropped (Smith
et al. 1982). File icons draw upon the important role that place plays in our
experience of material possessions and extend it to digital objects. For instance,
just as I know that I can �nd my favourite pen in the front compartment of my
backpack, I can �nd the piece of music I just downloaded in my Downloads
folder (see �g. 16). �anks to the �le’s graphical representation and almost
physical properties that convey a ‘strong sense of place’ (see Banks 2014, 257),
users can reason about their �les in ways that are similar to how they reason
about their material possession, whereas Odom et al. remind us, knowing what
you have is entwined with knowing where to look (2012, 788). In short, �le icons
and folders have come to represent our ‘stu� ’ – our possessions – on Desktop

62

Figure 17: �e standard set of actions on a mobile �le manager.

computers. But as the following quote from one of the participants of study
conducted by Odom et al. (2012) highlights, ownership of a �le is complicated
once it moves online:

“the more I talk about it, the more the idea of owning something
online seems lost in translation” (cited in Harper et al. 2013, 1135).

6.1.2 Outlining a way forward

Is our diminished or lost sense of ownership and control over our stu� an
inevitable outcome of our increasingly interconnected digital lives? Or put
another way, if we take seriously the insight that people think of their �les,
including those kept on their mobiles, as digital possessions, to what extent do
current mobile and cloud architectures actually support, or undermine, such a
treatment of Files?
On the mobile, we have shown that the �le manager – My Stu� – that we

developed in chapter 5 can support common actions of Desktop Shells, such as
Windows Explorer or OSX Finder. �ese actions include, listing collections of
or displaying individual �les and folders on the phone & sd card, moving and
copying �les between folders, as well as deleting and renaming �les & folders
(see �g. 17). �ese standard actions, which are composed of one or more of the
minimal �le operations outlined above, operate within the boundaries of the
phone’s �le system and behave, barring a system failure, in predictable ways.
While these actions fall in line with notions of digital possession, they only do so
in a narrow sense; that possessions are something you have. However within the
broader sense of the term – where possession is a label for treating things – such
actions no longer encompass what users seek to do with their stu� and that are
enabled by the Cloud. In a way we are caught between two worlds. We can stay

63

within the con�nes of the �le manager, where digital objects are modelled on the
physical things that surround us. Here we can speak of our �les as possessions, in
the narrow sense. Or, we enter the online world of the Cloud, where our �les lose
their Gibsonian a�ordances (Harper & Odom 2014) and become non-things
(Flusser 1999) – possessions only in the very broadest of senses. Instead, we
start referring to our stu� di�erently: as Experiences, Information, Data, or
Blobs.
Contemporary mobile architectures position themselves as a portal into the

cloud and attempt to translate between these two worlds through a single inter-
face – share – that mostly moves in one direction: from the mobile to the Cloud.
�ere is no question that the Cloud has enabled a plethora of ways to share and
engage with our stu� socially. However once our stu� gets pushed through this
interface and into the Cloud, the operating system and its �le manager ceases
to manage or look a�er it. �e �le in e�ect moves outside of our awareness and
control. It is no wonder then that something gets ‘lost in translation’ (Odom
et al. 2012). We can only conclude that it is impossible to consider how a �le
manager might support notions of digital possession without supporting social
actions of sharing that interface with the Cloud and other devices and data stores.
A careful, critical, and creative analysis of the possibilities and constraints of con-
temporary mobile and cloud architectures is necessary to better understand how
we can support notions of possession when �les are no longer just created and
stored on individual devices, but also shared with others and travel through the
Cloud. I conducted this analysis and developed theMy Stu� prototype during a
three month internship at the Human Experience and Design research group at
Microso� Research in Cambridge, uk, who have been leading investigations and
developing prototypes that explore issues surrounding what possession means
in the landscape of cloud computing (Odom et al. 2012; Harper & Odom 2014),
social media (Lindley et al. 2013; Banks 2014), and personal devices (Harper
et al. 2013).

6.2 contemporary cloud architectures

To begin our analysis of how mobile and cloud architectures can better support
notions of possession, we start with a simple scenario: giving a copy of a photo to
a friend. �is social action moves beyond the con�nes of the individual device –
that of the sender – and implicates a second device – the receiver. To develop
a solution that supports a treatment of possession within this scenario we will
need to extend the grammar of action of theMy Stu� �le manager to support
alongside common local actions such as move to and copy to, a new action
give to. To orchestrate this act of giving we turn to the Cloud, a key technology
of the contemporary computing on the Internet whose architectural style, as
we will see in the next section, promise not only great possibilities but are also
causing concern by changing the relationship people have with their digital stu�.

6.2.1 Demystifying the Cloud

�e term ‘the Cloud’ mysti�es as much as it informs. It is, as Reese (2009)
points out, a canonical example of a buzzword that conveys an appearance of
meaning without much actual meaning. But if we look at the technologies that
make up cloud computing – namely, Web Servers, Databases, and the http
Protocol – we can see that these are the same familiar technologies of the Web.
What distinguishes the Cloud from the Web, however, is its use of virtualisation.
�e fundamental idea behind virtualisation is to abstract away the hardware of
a single computer (CPU, disk drives, memory, etc) into several virtual machines
that run concurrently on a single physical computer (Silberschatz et al. 2013,
711). Each virtual machine is a separate execution environment: that is, it runs

64

its own Operating System, which in turn might run an application such as aWeb
Server or Database. From the point of view of the virtual machine it appears to
be running on its own private computer, even though technically speaking it is
the virtual machine manager, or hypervisor, that creates and runs many virtual
machines by providing a hardware interface that is identical to the physical
host computer (Silberschatz et al. 2013, 712). In a nutshell, virtualisation
technologies allow entire operating systems – running applications of their own
– to run as applications within other operating systems.
Cloud computing applies virtualisation technologies to encapsulate and ab-

stract away from lower level computing concerns and couples it with an attractive
pay-as-you-go charging model. Within the cloud computing paradigm, comput-
ing resources of various kinds are made available to customers, who are referred
to as tenants in cloud computing jargon, as a service using internet technologies.
�is phrase – ‘as a service’ – is a moniker that is used to di�erentiate between
three general types of cloud services: Infrastructure as a Service (IaaS), Platform
as a Service (PaaS), and So�ware as a Service (SaaS)7.

Infrastructure as a Service

As the name implies, Infrastructure as a Service, frees tenants from the burden
of purchasing, creating, and maintaining their own physical IT infrastructure
(Reese 2009, 18). Tenants instead rent virtual machines from Cloud Providers8
and pay only for the amount of computing resources (CPU cycles, memory, disk
storage, bandwidth, etc.) used. What makes the IaaS di�erent fromWeb hosting
companies of the 1990s is the ease and speed at which virtual machines can
be requested and disposed of using either a web interface or api as well as the
granularity (per minute, instead of per month or year) at which they are billed. If
we wanted to develop an e-commerce site MothersDayGi�s.com, to stay within
the context of gi�ing, we could start doing so today using only a credit card
and within minutes of requesting have access to and start developing on a small
virtual machine running a full LAMP stack9 that is connected to a high speed
�bre network and costs about $0.05 per hour: no upfront costs and no monthly
or yearly commitments required. In this example the Cloud Provider, such as
Amazon EC2 or Microso� Azure, owns and is responsible for reliably operating
the physical computing hardware and network, whereas we, as the tenants, are
responsible for everything from the guest operating system up (Reese 2009, 18):
the database, web server, as well as the application and business logic of our site.
In our �ctional example, we might expect demand to grow during the weeks

surrounding mothers day. If we were to role out our own IT infrastructure, we
would have to anticipate and purchase hardware and operating system licences
for peak demand which might only last for 4 weeks; these computing resources
would be largely unused for the remaining 48 weeks a year. With IaaS, on the
other hand, it becomes possible to dynamically tailor computing capacity to
run our site to the demand placed on it at any given time. For instance, during
times of low demand our site could run on a single, small virtual machine,
whereas during times of high demand – in the weeks surrounding mothers day
– we could request more virtual machines and spread our site across them: for
instance, one virtual machine or even two or three to run the web server(s) and
another, more powerful virtual machine for the database. �e major bene�t
of IaaS is that we would only need to pay for this increased capacity during
times of high demand, saving money when demand is less. Since demand is
something that web services can measure and log (i.e. hits per minute; or CPU
load) and thus also act upon, many services that are deployed in the Cloud are
con�gured in such a way that the services themselves can programmatically

7. see Support (2013)
8. �e most popular Cloud Providers are Amazon, Google, Microso�, & Rackspace.
9. Linux, Apache Web Server, MySQL database, Python/PHP scripting language

65

request additional or drop super
uous virtual machines depending on its needs.
�is ability to quickly and automatically scale computing capacity up or down
to match demand is referred to as elasticity in cloud computing jargon and is
o�en only possible within virtualised environments.
We can see three important properties of IaaS Cloud architecture at work: it

eliminates the guesswork and upfront costs of acquiring IT infrastructure to run
a service on the web; it allows services to elastically scale up or down to match
demand; and a metered, �ne billing granularity mean that tenants not only pay
for the resources they use at any given time, but also that economies of scale and
Moore’s Law (1965) mean that prices are low and continually falling10.

Platform as a Service

Just like with any physical computer connected to the internet, it is crucially
important for the systems running within virtual machines to run up-to-date
so�ware and to have all the latest security patches installed. Platform as a Service
(PaaS) frees tenants from dealing with such administrative duties by managing
and providing a complete operational and development environment on top
of the physical computing infrastructure (Reese 2009, 17). �is all sounds
good in theory, but let us return to our example e-commerce site, or more
precisely the database that powers it, to see how it might bene�t from running
in a managed PaaS environment. On the above IaaS Cloud architecture the e-
commerce database was running in its own virtual machine, where we, as tenants,
are responsible for ensuring that all so�ware updates and security patches are
installed and that the database is running smoothly. �is single instance, however,
will neither scale nor replicate11. So we would either risk losing data or need to
implement scaling and replication procedures ourselves. �is, in turn, would
require us to provision, maintain, and pay for a second virtual machine. Using
PaaS Cloud architecture, we could instead store our database tables12 on Google’s
Cloud SQL, Amazon’s RDS, or Microso� Azure’s Table Storage. All of these PaaS
o�erings provide simple mechanisms to setup, develop, and scale a relational
database that is replicated across data centres to ensure data integrity. Time
consuming administrative and operational duties, such as patching and updating
so�ware, ensuring that proper so�ware licences have been acquired, and writing
the complex procedures to e�ectively scale and reliably replicate the database
are all relegated to the operations teams at Google, Amazon, or Microso�. With
PaaS tenants can focus more on creating infrastructures and services and less on
maintaining them.

So�ware as a Service

Examples of So�ware as a Service are platforms such as Google Docs13, O�ce
36514, and Salesforce15 and are therefore not relevant for our research undertak-
ing.

6.2.2 Choosing a Cloud Service Model

Now that we have an overview of the three main cloud service models – IaaS,
PaaS, and SaaS – we need to choose service model to develop the ‘cloud backend’

10. In their Cloud Platform Keynote, Google announced price cuts that e�ectively mean that
their prices follow Moore’s curve, adjusted by a slim operating cost overhead (2014)
11. Data replication across database instances is also used as a strategy to lesson the chances of

data loss due to hardware failure
12. In our example these tables would contain information on products, customers, invoices,

etc.
13. http://docs.google.com
14. http://o�ce.com
15. http://salesforce.com/

66

for the My Stu� �le manager. �e choice really comes down to the former two,
as within the SaaS model we would be unable to write our own APIs. Especially,
for developers working on their own or within companies small and large the
PaaS o�erings of the Google Cloud Platform or Microso� Azure are the most
interesting. Consider ‘Snapchat’. �is novel photo sharing app has millions
of users, and yet the company does not have an operations team of their own,
because they developed their service on top of Google’s PaaS o�erings (Google
Cloud Platform Live: Keynote from Urs Hölzle 2014). And it’s not just Snapchat,
for many developers PaaS model hits a ‘sweet-spot’, where they can still develop
their own data-models and code their own APIs, but are freed from system
administrative duties such as making sure that servers are running smoothly day
and night as well as installing so�ware updates and security patches (Simmons
2015). Since themain emphasis within the PaaSmodel is on creating new services
and features and less onmaintaining them, PaaS is a popular choice for teams that
do rapid prototyping and adopting agile so�ware development methodologies
(Support 2013).
With such high praises, it should come as no surprise to the reader that we

choose to prototype My Stu� ’s extended grammar of action of top of the PaaS
model. �e reader will also notice that in the preceding pages that we havemostly
consulted developer oriented conferences, blog posts and videos; and deliberately
allowed ourselves to become swept up in the hype and marketing of the Cloud,
to experience for ourselves the promises (leaving aside for the moment if these
promises are justi�ed) of being able to create cheap, scaleable, easy-to-develop
and maintain cloud services. Before we canonise these praises and promises, we
should also consider the two main drawbacks of PaaS o�erings (Support 2013).
Firstly, when developers write their APIs against speci�c vendors PaaS o�erings,
their services tends to be locked-in to that vendor. Secondly, PaaS generally adopt
standard technologies and work better with speci�c, albeit popular computer
languages such as Python, JavaScript (node.js) and .NET; so, PaaS is generally
unsuitable for projects using niche or domain speci�c languages or requiring a
speci�c coupling between hardware and so�ware.
In some ways these drawbacks are further motivation for choosing the PaaS

model in general and helped us choose between the big three Cloud vendors:
Amazon, Google, and Microso�. Remember our motivation for leveraging the
Cloud to extend our �le managers grammar of action is to understand through
our practical engagements – developing data models, APIs, storage services, etc –
not only the the architectural style of the Cloud but also the interaction between
the Cloud and the Mobile, two major and converging computing environments
of our time. So we aren’t interested in specialised hardware or niche so�ware,
but to develop against all those standard protocols (i.e. HTTP), solidi�ed Cloud
technologies (SQL), and developer best practices and principles (e.g. MVC,
rest).

6.2.3 Choosing a PaaS Cloud Vendor

Although we considered all three big Cloud Vendors – AmazonWeb Services,
Microso� Azure, and Google Cloud Platform, – we quickly eliminated Amazon
Web Services because their focus is on IaaS o�erings. We favoured Microso�’s
Azure Mobile Service PaaS o�ering over Google’s because it o�ers greater inter-
operability and is tailored tomobile app development. Azure Mobile Services
(ams) have positioned themselves as a one-stop for building backend services
and datastores that support all major mobile platforms (Android, iOS, and Win-
dows). It focuses on providing cross platform solutions to common mobile
app requirements – how to register and authenticate users; how to send push
noti�cations; and since users are increasingly expecting their ‘cloud connected’
apps to work even when o�ine, how to store, interact with, and synchronise
cloud data with local databases and vice versa. Within all these scenarios, ams

67

emphasises interoperability, which means that almost by de�nition ams adopts
standard technologies (SQL Databases), protocols and data-interchange formats
(http & JSON), as well as established design patterns and styles (MVC & rest)
to make the networked applications that run on top of ams support common
mobile platforms. Ultimately we choose the Azure Mobile Services as it is run
on top of a reasonable cross-section of solidi�ed technologies and developer best
practices that will help us study and understand the subtle, but important ways
these individual components are composed that ultimately a�ect the design of
applications and services that people use everyday to store and share their stu�.
�ese are complex topics that we will discuss in the coming sections, but for the
moment we will focus on familiarising ourselves with AzureMobile Services. But
before we dive into these subjects, I again ask to be excused for the tedious and
detailed accounts that follow. It is however necessary to describe and document
the tedious to get at the subtleties.

6.2.4 Getting Started with the Azure Mobile Service PaaS

A testament to how easy it is to use cloud platforms is the fact that the most
challenging part of getting started with Azure Mobile Services (ams is giving
a the service a unique name. All tenants using ams share the same, global
namespace, and many names are already in use or reserved. Similarly to how it
is di�cult for people with common names to �nd an appropriate and unused
email address on popular providers such as gmail. Fortunately for us the name
mystuffservice.azure-mobile.net was available. �e remaining steps to
create the service are straightforward:

1. choosing between one of the hosting zones US west, US east, North Europe, East
Asia, and Japan West;

2. choosing between twobackend languages/platforms, .NET and JavaScript/Node.js;
3. and �nally, creating an a new SQL database server instance and setting its ad-
ministrator account and password (or alternatively, providing the connection
string, account, and password to an existing SQL database server).

We choose North Europe as our hosting zone since at the time we developed
the backend were living in the uk, and since we implemented the My Stu�
mobile datastore in C#, we decided to stay within the .NET ecosystem on the
server/service side as well (see �g. 18). Finally, we created and con�gured a
new SQL database server instance and placed it in the same hosting region (see
�g. 19).
A�er creating the service it takes a few minutes for it to become ‘live’. Existing

applications can then interact with the service by installing an ams client library16
that connects to the now live service using its web address and application key.

public static MobileServiceClient MobileService = new MobileServiceClient(

"https://mystuffservice.azure-mobile.net/", // URL of mobile service

"ijrtUPvkMy2iB7eFvuNiNmofZbILSN23" // application key

);

�is client library exposes an api that can interact with the newly created
ams backend. �is api is di�cult to get working properly, since it mediates
between client-side and server-side concerns. In practice this means that server
side changes, especially those that a�ect the data model, o�en need to be met
with congruent changes to the client side, and vice-versa. Without a properly
structured code base such tightly coupled systems can grow in complexity and

16. https://www.nuget.org/packages/WindowsAzure.MobileServices/1.3.0 for
Windows clients. However, similar libraries exist for Android and iOS.

https://www.nuget.org/packages/WindowsAzure.MobileServices/1.3.0

68

Figure 18: Creating, naming, and placing an ams service.

Figure 19: Creating, naming, and placing the database server and creating an
administrator account.

69

are o�en di�cult to maintain and debug17, let alone develop in the �rst place. So
a better starting point – especially for developers who, like myself, are unfamiliar
with Microso�’s PaaS o�erings – is to download the source code of a sample
Todo app that connects a simple Todo list front end running onWindows Phone
to a matching ams backend. Todo list applications have evolved into a de-facto
standard scenario to demonstrate the structure and syntax of data models, views,
and controllers on the server side18. �e ams sample application, which for
convenience already have the above server addresses and application keys �lled
in, can be downloaded from the portal page of the newly created service. Upon
inspection of the source code we can see that the overall application – called a
Solution in the Visual Studio IDE – consists of two separate components – or
Projects – one for the server-side and another for the front end.
On the server-side a single, global Todo list is stored and queried through the

TodoItem database table, whose scheme is de�ned by the TodoItem.cs entity
data model class. Additional, internal �elds such as the TodoItem’s Id as well
as CreatedAt and UpdatedAt timestamps are members of the EntityData
parent class and thus are also part of the database table.

public class TodoItem : EntityData {
public string Text { get; set; }

public bool Complete { get; set; }
}

Client side applications can interact with the Todo list, de�ned by the above
data model, through the api that the ‘TodoItemController.cs’ class exposes.

public class TodoItemController : TableController<TodoItem> {
// POST tables/TodoItem

public async Task<IHttpActionResult> PostTodoItem(TodoItem item);

// GET tables/TodoItem

public IQueryable<TodoItem> GetAllTodoItems();

// GET tables/TodoItem/48D68C86-6EA6-4C25-AA33-223FC9A27959

public SingleResult<TodoItem> GetTodoItem(string id);

// PATCH tables/TodoItem/48D68C86-6EA6-4C25-AA33-223FC9A27959

public Task<TodoItem> PatchTodoItem(string id, Delta<TodoItem> patch);

// DELETE tables/TodoItem/48D68C86-6EA6-4C25-AA33-223FC9A27959

public Task DeleteTodoItem(string id);

}

Looking only at above method signatures and comments of the controller
class we can tell that the api is accessed through http and that the endpoints
and actions it exposes are the ‘CRUD’ (create, read, update, delete) operations
(see Silberschatz et al. 2011) on the ‘TodoItem’ database table.
�e front-end app of the sample makes use of the Azure Mobile Services client

library to connect to and interact with the backend. When complied & deployed
to a phone, the front end application fetches and displays Todo items and allows
users to create new as well as check o� (complete) existing Todo items. �e app’s
source code isn’t as neatly structured as the server-side code; it mixes calls to the

17. See for instance http://amy.palamounta.in/blog/2015/03/02/

level-up-your-api-with-hypermedia/

18. See for instance the immensely popular TodoMVC (2015) project that implements the
same Todo application on 64 di�erent application frameworks, allowing for a more structured
comparison between the frameworks. At the time of writing the project has been ‘starred’ 13,475
and ‘forked’ 7,403 times on GitHub.

http://amy.palamounta.in/blog/2015/03/02/level-up-your-api-with-hypermedia/
http://amy.palamounta.in/blog/2015/03/02/level-up-your-api-with-hypermedia/

70

web service with navigation and ui events. In the places where it is used, we can
tell that it exposes the above server-side Web api as an IQueryable collection.
�is is a common interface also used by list data structures. So syntactically at
least, enumerating (listing), inserting, and updating Todo items on a service and
database running in a datacenter somewhere in Northern Europe is no di�erent
than operating on a locally stored list. Behind the scenes the library deals with
object serialisation, de-serialisation, network calls, and caching so clients can
interact with server data, stored on a database, as if it were local data stored in a
list.
�e server-side and front-end components in the sample application only

cover the most basic scenario, where a single user interacts with a single, global
Todo list; if we’d deploy the phone app to a second user’s device, they’d see the
same, global Todo list as the �rst user.

6.2.5 Diving Deeper into Azure Mobile Services

�e ams documentation explains how to extend this simple app with common
requirements that people have come to expect from cloud connected mobile
apps:

1. User Accounts/Authentication
2. Sync and o�ine support
3. Cloud Storage
4. Push Noti�cations

Accounts & Authentication

Account Registration and Authentication is a key component to enable multi-
user support. Extending the sample app and service to support this feature is
mostly done on the server side. �e front end only needs to be expanded to
provide a registration/login ui that make the appropriate calls to the client library.
Restricting access to only those Todo Items that belong to the user is done in
three steps:

1. Adding a UserId �eld inside our TodoItem data-model class, on both the server
and client-side. On the server side this also adds UserId as a column in the
TodoItem database table.

2. Annotating theTodoItemController classwith a[AuthorizeLevel(AuthorizationLevel.User)]
attribute that ensures that all operations against the TodoItem table can only be
performed by an authenticated user.

3. restricting CRUD operations so they can only operate on those TodoItems that
are owned by the user currently accessing the api.

O�ine sync

�e Azure Mobile Services client library supports what is loosely termed ‘o�ine
sync’ (Malayeri 2015). �e ‘o�ine’ part of the term refers to the ways in which
clients can access, insert, modify, or delete data in the app even when there is
no network connection by storing data in a local, o�ine database. �is also
serves to improve app responsiveness as server data is cached locally. �e ‘sync’
part of the term refers to the ways these o�ine changes are synchronised with
the online database and vice-versa. Because data and changes can be locally
cached and synchronised, apps can not only support o�ine workloads but app
environments themselves become portable and can be used and synchronised
across multiple devices, each with their own o�ine, local cache that in the

71

process of synchronisation pushes local changes to, and pulls remote changes
from, the online database.
O�ine sync support is implemented entirely on the client side, by storing and

interacting with data in a local SQLite3 database. On top of this local database
the client app de�nes tables, in our case a TodoItem table. �e database is then
used to initialise a SyncContext in the Azure Mobile Services client library.
To synchronise changes the client app calls the following method, which �rst
pushes local changes to the api server and �nally pulls remote changes.

private async Task SyncAsync()

{
await App.MobileService.SyncContext.PushAsync();

await todoTable.PullAsync("todoItems", todoTable.CreateQuery());

}

Cloud Storage

�e Cloud is not just a place to do computing, but increasingly also to store and
share data. To cater for this need, Azure provides a storage platform called Azure
Blob Storage (abs) that has comparable features to Amazon and Google’s Cloud
storage o�erings. �e Todo list application demonstrates how a mobile app can
upload to as well as access data stored in the Cloud. It does so by expanding the
app to allow users to attach a photo to a TodoItem, for instance if a TodoItem is
‘Buy Co�ee’ then the user could snap a photo of the particular brand or roast
they want to buy. �ese photos, however, are not stored in the Database, but are
uploaded to and then accessed from the Azure Blob Storage system. �is simple
scenario illustrates how data is managed and represented di�erently between
mobile apps and cloud services. For on the mobile phone, when a photo is taken
it is stored as a File with a particular name and in a Folder hierarchy. But once
uploaded to Azure Blob Storage, the �le ceases to be a File, because technically
speaking Azure Blob Storage doesn’t store �les: it stores �le data in the form of a
blob (Myers 2015). Such quibbling over semantics is o�en symptomatic of the
worst scholastic pedantry, but as we will show in the coming sections this subtle,
o�en imperceptible di�erence, has enormous consequences.
Within many scenarios the subtle distinction between a �le and a blob storing

�le data has no practical or observable consequences. But in order to under-
stand how such di�erences can have larger emergent e�ects, we need to start by
unpacking their similarity as well as di�erence.
Just like �les are contained within folders, blobs ‘live’ in containers. However

unlike folders, which can be nested inside other Folders, containers are stored
at the same level. So while a storage account might have multiple containers,
and each container can fold multiple blobs, a container can’t hold another con-
tainer. In other words, blobs and containers are
at, whereas �les and folders
are hierarchical. Additionally, containers are not just places that hold blobs but
also control access. �at is, a container dictates how and by whom blobs can be
created, read, written to, and deleted.
We return to the Todo list application to examine the various components

that are implicated in the various transformations that a �les undergoes as it is
uploaded to the Cloud. In order to use the Azure Blob Storage service the tenant
must �rst create a storage account. To reserve the name for our future project
we called this storage account mystuffstore, but for the moment we will be
using it to expand the Todo list app. Storage accounts can contain an unlimited
number of containers, where each container can store an unlimited number of
blobs. �e expanded Todo app/service, however, only uses a single container,
named todoitemimages, and assigns each blob a GUID (globally unique id) to
avoid naming collisions in the global,
at namespace of the todoitemimages
container. �ese assignments are carried out on the client side, as can be seen in
the �rst few lines of the following method. �e todoItem is then ‘inserted’ into

72

the todoTable. �is insert operation is carried out as an http post on the api
server.

private async Task InsertTodoItem(TodoItem todoItem, StorageFile media)

{
// Set blob properties of TodoItem.

todoItem.ContainerName = "todoitemimages";

// Use a unique GUID to avoid collisions.

todoItem.ResourceName = Guid.NewGuid().ToString();

// Send the item to be inserted. When blob properties are set this

// generates an SAS in the response.

await todoTable.InsertAsync(todoItem);

// If we have a returned SAS, then upload the blob.

if (!string.IsNullOrEmpty(todoItem.SasQueryString))

{
// Get the URI generated that contains the SAS

// and extract the storage credentials.

StorageCredentials cred = new StorageCredentials(todoItem.SasQueryString);

var imageUri = new Uri(todoItem.ImageUri);

// Instantiate a Blob store container based on the info in the returned item.

CloudBlobContainer container = new CloudBlobContainer(

new Uri(string.Format("https://{0}/{1}",
imageUri.Host, todoItem.ContainerName)), cred);

// Get the new image as a stream.

using (var inputStream = await media.OpenReadAsync())

{
// Upload the new image as a BLOB from the stream.

CloudBlockBlob blobFromSASCredential =

container.GetBlockBlobReference(todoItem.ResourceName);

await blobFromSASCredential.UploadFromStreamAsync(inputStream);

}
}

}

When the todoItem arrives at the api server, it �rst checks if the todoitemim-
ages container exists. If not, it creates the container and grants public, non-
authenticated read-only access to the blobs it contains. Using a Shared-Access
Signature (SAS), the api server grants temporary write access to the container
for 5 minutes. �is signature is stored in the SasQueryString �eld of the
todoItem, which is �nally inserted in the database and returned in the request
response to the client. �e client app then uses the SAS credential to provision a
new blob and upload the �le’s contents.
In our example, wemight startwith the �leD:\Pictures\WP 20150311 18 04 27 Pro.jpg,

a photo of the particular co�ee brand we want to attach to the todo item ‘Buy Cof-
fee’. In transit, the �le’s content is read from a DataStream that is ‘transported’
through http, which is written to the blob: http://mystuffstore.blob.
core.windows.net/todoitemimages/9b490ceb-8e99-41e4-9091-ee5aa13c47ee.
Here we can already see how a �le, when uploaded to the cloud, can lose its
name, extension, and place. Further still, we could argue that the local �le loses
its signi�cance altogether, as the app only accesses the photo using the above
URI. �is is done in through the following XAML binding.

<StackPanel Orientation="Vertical">

<CheckBox Name="CheckBoxComplete" IsChecked="{Binding Complete, Mode=TwoWay}"

http://mystuffstore.blob.core.windows.net/todoitemimages/9b490ceb-8e99-41e4-9091-ee5aa13c47ee
http://mystuffstore.blob.core.windows.net/todoitemimages/9b490ceb-8e99-41e4-9091-ee5aa13c47ee

73

Checked="CheckBoxComplete_Checked" Content="{Binding Text}"
Margin="10,5" VerticalAlignment="Center"/>

<Image Name="ImageUpload" Source="{Binding ImageUri, Mode=OneWay}"
MaxHeight="250"/>

</StackPanel>

�is highlights two salient properties of the Azure Block Storage system.
Firstly, abs is located in a narrative of the scalable and de facto unlimited: whereas
storage on the phone is expensive, volatile, and limited, abs is cheap, virtually
unlimited, and easily scalable. Secondly, blobs are optimised for streaming and
can be accessed using a trivial ui binding.

Push Messages

Pushmessages are used to send small amounts of data (<4KB) from cloud servers
to client apps. For instance, chat services typically use push messages to deliver
messages and ui alerts to the user. Or the push message might alert the app that
there is new data to be fetched from the server (Developers 2015). Basically
push messages are responsible for most of the beeps, buzzes and badges on a
smartphone.
For developers push noti�cations provide an important mechanism for ar-

chitecting applications that rely on a two-way communication stream between
client apps and api servers, that both client and server can initiate. Traditionally
it is the client app that initiates communication with the server, for instance by
making a http request to an api server end-point; the server, in turn, answers
the request with a http response. Beyond responding to such requests, the
server has no other way to send messages to the client app. With push messages,
however, the server can initiate communication with the client by sending it a
small message. �e client, in turn, can ‘respond’ to such a message by making an
http request to the api server. Android, iOS, andWindows Phone provide push
messaging services that work in approximately the same way by maintaining a
single active socket connection open between a phone and push servers running
in the cloud. All applications that make use of push messages use the same
connection that is established and maintained by a system background service,
so overhead and battery drain are minimised.
When an api server wants to send a push message to a client app, running

for instance on Windows Phone, it sends a request containing the message and
the phone’s unique client app id19 to the Windows Push Noti�cation Services’
(wns) server, as seen in �g. 20 (1). �e wns server then sends the message to
the Noti�cation Client Platform (ncp), a background service that handles push
messages for all applications (2). �e ncp looks at the message, matches it to the
correct client application, starts that application and delegates it to the correct
client application and starts that application (3). �e client app might create a
noti�cation straight way from the data in the message or the app makes a normal
http request to the api server (4).

6.2.6 Tying the components together

We originally saw the Todo sample application as a quick way to learn about
and develop a simple PaaS api server and a matching client app. Extending
this sample app with user accounts/authentication, o�ine and database sync
support, cloud storage, and push noti�cation, however, transformed its purpose.
�e extended sample app, inspired us to think about how, for instance, Azure
Blob Storage could be used to temporarily store and distribute �les from sender
to receiver or how push noti�cations could be used to notify participants and

19. �is id is obtained when the client app registers for push messages with the push severs and
is forwarded to the api server.

74

Figure 20: Push noti�cation architecture.

coordinate more complex acts of sharing such as gi�ing, where the �le needs to
be removed from the givers phone once the recipient receives it. So more than
a contrived example, the extended Todo app/service became, for me, a kind of
sca�olding for common mobile app requirements.

6.3 architecting to give

We started with a most basic scenario. Giving a photo �le (or rather a copy of
a �le) to a friend. Immediately this simple scenario leads us to consider three
high-level questions:

1. How do sender and receiver identify each other?
2. How is the �le uploaded to, stored on, and downloaded fromAzure Blob Storage?
3. How does the original �le change to re
ect this act of giving?

In the next three sections, we develop technical solutions that respond to these
questions.

6.3.1 Accounts & Contacts

Accounts serve two purposes. �ey must uniquely identify a person and restrict
access to any data that is stored online to that person; and secondly, they must
allow other users to �nd each other using only information they have already
stored on their phones: namely, phone numbers. So in a nutshell, users iden-
tify themselves to the service and to each other through their phone numbers.
�is means that users can �nd other users using the phone numbers stored in
their address books. �e popular chat application WhatsApp exempli�es this
approach, whereby when a user logs on to the app she can see and chat with
all those people, stored in her phone’s Address Book, who also have WhatsApp
accounts. We created a User Account scheme, outlined in �g. 21, based on this
approach of matching phone numbers.
Users are authenticated using their salted20 and hashed passwords. �e

UserId �eld is further used as a foreign key to identify and restrict access

20. In cryptography salt is additional random data that is used when hashing password and
helps defend against dictionary attacks.

75

Figure 21: giving class diagram

to user data – for instance, a Contact stored in that User’s address book – to that
particular user. �is foreign key relationship between a User Account and user
data stored in other tables is one-to-many. �is means that any User Account
can have multiple Contacts – for instance one for each user’s friends, colleagues,
and family – but that every Contact ‘belongs’ to, and can only be accessed by,
one particular user.
When a registered user wants to give a photo to a friend, our system creates

two objects: a Contact object, which stores the friend’s address book entry
id and copies of the friend’s name and phone number; and a Giving object,
as seen in �g. 21. When the Giving object is �rst created only the UserId,
ReceiverContactId, FilePath, and TimeStamp �elds are �lled by the client-
side app and inserted into the local database. In this ‘incomplete’ state, a Giving
represents an expression of intent that the user wants to send a particular �le to
the receiver. Next the local database is synchronised with the server to propagate
the changes. �rough this synchronisation corresponding objects are re-created
on the My Stu� api server. �e api server �rst validates the input, to check if a
corresponding receiver account exists by matching the phone number the user
signed up with.

6.3.2 Uploading to, storing on, and downloading from Azure Blog Storage

A�er this validation step the api server �lls in the remaining �elds of the Giving
object of �g. 21, similar to the process we followed in context of the Todo list
sample app. �at is the api server generates a Shared Access Signature to allow
the client app to create a blob and upload the �le to a storage container. Upon
successful upload of the �le the server �nds and/or creates corresponding objects
that belong to the receiving user, the Account, the Contact of the sender, and
a Receiving object. �is Receiving object is identical to the Giving object
but belongs to the receiving user and replaces the ReceiverContactId with
the corresponding GiverContactId.
Next the api server sends a push noti�cation containing the Receiv-

ing object, upon which the client app downloads the �le from the Azure
Blog Storage using the FileURL �eld, stores it at a speci�c FilePath – say
D:\Pictures\ReceivedPhotos\WP 20150512 13 02 33 Pro.jpg –
marks the operation as complete, and �nally initialises a synchronisation with
the api server, which in turn marks the Giving as complete and sends a push
noti�cation to the giving user whose client app initialises a �nal synchronisation
to complete the exchange.

Tidying up

It is di�cult to resist the temptation to retain the photo on the Azure Blob Storage
for safekeeping and my initial instinct was as well to give in to this temptation.

76

Figure 22: Receiving class diagram

Most Cloud storage providers make impressive reliability guarantees that make
secondary storage on the mobile phone seem downright volatile. However, upon
further re
ection that we turn to in the next section I decided instead to not
muddle up giving with safekeeping. And so implemented and scheduled a daily
batch job to check for corresponding Giving and Receiving objects that have
been marked as complete or whose initial timestamps are older than a month
and remove the matching photos stored on Azure Blob Storage.

6.4 extending file abstractions to incorpo-
rate metadata

While the �rst two emerging questions deal primarily with orchestrating the
pragmatics of the exchange, the �nal question asks if and how the original �le
that is given and the one that is received should change to re
ect this act of
giving. We elevate the discussion that pertains to this question to a dedicated
heading for it deals with the architecture of mobile datastores and speaks directly
to how new �le abstractions that encompass metadata (see Harper et al. 2013)
surrounding social exchange are needed to better support notions of digital
possession especially when these possessions move through, and are potentially
undermined by, the Cloud (see Odom et al. 2014).
�ese are lo�y goals, so it is again worth pausing for a moment to re
ect on

how best to approach this problem space. Richard Harper gets to the heart of
the matter in the introduction to his book Trust, Computing, and Society, where
he draws together diverse views and research cultures:

when designers approach the “problem space” of the Cloud, for
example, they have to consider the ontological “sense” that their
designs provide. Do users come to trust in their relations to their
digital “stu�”? Does that trust resonate with how those people get
on with their lives, lives that are su�used with digital materials but
that are, also, essentially about material properties that stand as part
and parcel of their human endeavors? �ese are anthropological
concerns, as much as they are technological and design questions.
—Harper (2014, 12).

New �le abstractions, in this context, should make visible those “material
properties that stand as part and parcel of their human endeavors”. And speaking
of such endeavours speci�cally in anthropological terms as the above quote urges
us to do, we look back to earlier chapters where we discussed human practices of
gi�ing and sharing. Further, we are again inspired by Tim Ingold arts of noticing
through which he boldly claims that “the properties of materials, in short, are
not attributes but histories” (Ingold 2011, 32); and how, in a later book review,
he draws on the seminal work of the British anthropologist Victor Turner (1967)

77

Figure 23: Magnet attracting iron �lings as a metaphor for new �le abstractions.

to explain “the capacity of certain things to attract meanings like iron �lings to a
magnet – meanings that by no means substituted for the things themselves but
rather augmented and enriched them without limit” (Ingold 2014, 517) as seen
in �g. 23.
Looking at �g. 23 we can still recognise the objective core, which in our case

would correspond with the original photo �le. But we can also draw parallels
between how the social doings associated with that �le – that is, who we showed
or gave a copy of that �le to and where it came from – contribute to its social his-
tory and becomematerial propertieswhich are attracted and attached themselves
to the objective core, much like iron �lings.
We thus leveraged theMy Stu� prototype to expand on the mobile sharing

interface that we problematised in earlier chapters to allow users to express
precisely those nuances, of how they wish to share their digital stu�, that are
lost when sharing is equated with copying. �rough this expanded interfaceMy
Stu� also explores new �le abstractions that can evolve to represent the social
life the �le gains when it is given, gi�ed, or collected for others, with the goal
of privileging those properties – or rather histories – of �les that are salient to
human a�airs so that people can again have con�dence in the provenance of
their digital stu�:

• Where did the �le come from?
• Where do its copies reside?
• What is happening to those copies?

We began by iteratively sketching such an expanded sharing interface and
corresponding �le abstraction by showing, critiquing, and improving nascent
design sketches with the Human Experience and Design Group as well as with its
research interns at Microso� Research, who collectively have made pioneering
contributions to the nascent research area of digital possession. �e emergent
sketches we settled on and that I subsequently prototyped are seen in �g. 24.
�e main idea behind these sketches is to reimagine the relationship between

the Operating System, its datastore, and sharing interfaces to give everyday
people better awareness and control of their digital possession. On the pc of the
90s, time-appropriate �le abstractions worked in partnership with the Desktop
metaphor to give and reinforce the Gibsonian a�ordances of the physical world
that form the basis of how people reason about their stu�: that I know I have
some photos from a skiing holiday, or bank statements for that matter, by virtue
of being able to see them �led away in a ‘Skiing Holiday’ or ‘Bank Statements’
folder. In short “place and ownership go hand in hand” (Harper & Odom 2014,
284). But in the mobile and networked world of today having and especially
sharing mean that storage is de-facto distributed (see Dijck 2008, 68). Even

78

(a) Expanded grammars of actions: beyond
share.

(b) New �le abstractions that highlight the
social histories of a �le.

Figure 24: Sketching and implementing expanded grammars of actions and �le
abstractions.

as the os might need to relinquish control over a �le in order for the user to
give or show it to distant friend. It should at least retain awareness of where
initial copies of a �le are located, as awareness of place is an important aspect of
ownership. �ese My Stu� sketches give users an indication of where their stu�
is, but also enriches and expands on the original object to also encompass the
social life it has since gained.
In the following section we explain how we prototyped the my stuff system

in form of an app. But we believe that it would provide substantial bene�ts to the
user if the Operating System take on this expanded role, especially as the major
Operating System providers such as Apple, Google, and Microso� all o�er a
form of converged Cloud storage through their respective iCloud, Google Drive,
and OneDrive platforms. �rough such an expanded role the os would in e�ect
change the unit of engagement from �les across various devices to something
that the user thinks of as their digital possession with all that that implies.

6.5 implementing the expanded my stuff proto-
type

We initially tried to implement theMy Stu� prototype using the recommended
system design pattern of mvvm that served us well when we prototyped the
co-present photo gallery of Chapter 4. We however quickly found that the APIs
that exposes a �le’s properties such as its size and date were di�cult to grasp.
And by grasps, I mean more in its mechanical sense of getting a hold of a thing
rather than in the cognitive sense of understanding something. OnWindows
Phone 8 we could access these properties using the common dot notation, but
on Windows Phone 8.1 that same property can only be accessed through an
asynchronous future, as the simpli�ed code-snippets of lst. 6.1 illustrate.

79

Listing 6.1 Photo Properties become Futures on WP8.1
//Windows Phone 8

foreach (var picture in album)

Debug.WriteLine("Picture taken on " + picture.Date); //Accessed through field

//Windows Phone 8.1

foreach (var photoFile in photoFolder)

var imageProperties = await photoFile.GetImagePropertiesAsync()

Debug.WriteLine("Photo taken on " + imageProperies.DateTaken)

�emain di�erence between these two snippets, besides the renamed classes
(Picture vs StorageFile and PictureAlbum vs StorageAlbum), is that im-
age properties such as the photo’s date can only be accessed a�er an asynchronous
method call. �e await keyword is subtle and crucial here as it indicates to the
programmer that this method won’t necessarily return a result instantaneously
but that it promises to return a result in the future:

A future is a stand-in for a computational result that is initially
unknown but becomes available at a later time. �e process of
calculating the result can occur in parallel with other computations.
�e Futures pattern integrates task parallelism with the familiar
world of arguments and return values21.

�is creates a fascinating juxtaposition, whereby material properties are con-
sidered histories when approached anthropologically, but are modelled as a
Future when trying to handle them programmatically. As a computer scientist
I’m sympathetic to the needs of increasing parallelism especially within the
limited computational resources of the mobile devices. However, the unfor-
tunate and di�cult side-e�ect of working with such futures are that without
major workarounds it is impossible to bind to the results of such asynchronous
methods from the User Interface.
Accessing and displaying the date the photo was taken, as I did in lst. 6.1, is

a simple, self-contained example of this phenomenon that still encapsulates a
range of similar di�culties that I was consistently confronted with. For instance,
the following is a more realistic scenario: listing all image �le names in a folder
and displaying the image thumbnail alongside each one. Being able to bind to a
property directly or via a simple converter as we did in Chapter 4, is crucial to
e�ectively utilise limitedmemory, as this shi�s responsibility to the list controller
for loading thumbnails into a cache and just as importantly invalidating that
cache22 as the user scrolls through the list. �is delicate interplay of loading
new content into memory while simultaneously freeing up memory is crucial
to enabling mobile experiences that don’t stutter and stock and prevent crashes
caused by out of memory errors. Being able to e�ectively utilise built-in com-
ponents that have been stress-tested and veri�ed is preferable to rolling out a
custom solution which o�en ends up being far less robust.
Initially I tried the latter with varying success and ended up with a solution

that con
ated and tightly coupled together ui state (i.e. the current scroll position
in the list), events (i.e. such as when individual thumbnails become available
or when a user scrolls the list), with views (the page that displays the list) and
models (the individual photos/�les). By introducing and responding to events
that trigger state changes, which then need to be kept track of, I had to sacri�ce
clarity in the app architecture. �at is, the app worked but would occasionally

21. https://msdn.microso�.com/en-gb/library/�963556.aspx
22. Cache invalidation is famously considered one of the two hard problems in computer science.

(See: https://martinfowler.com/bliki/TwoHard�ings.html)

80

skip a thumbnail or would crash if the user scrolls too quickly. �e paradox is
that it was far more di�cult to implement the logic to display a photo from the
local �lesystem than one stored at a remote url. �e former requires manually
querying asynchronous data sources and being directly responsible for its results.
�at is we had to manage the lifecycle of the results – notifying the ui when
results are available and clearing up the result frommemory when it is no longer
required – and all the while being responsive to ui scrolling events. Display a
photo stored at a remote url, on the other hand, only requires a simple binding
from the Image ui Control to the url, as illustrated below. �e os handles, and
is responsible for, the rest.

<Image Name="Photo" Source="{Binding PhotoUrl}">

Despite these occasional glitches the system worked well enough to continue
prototyping the interface between mobile and cloud datastores and services.

6.5.1 Implementing expanded �le abstractions

Next to querying the �lesystem, the My Stu� app also queries the local database
which it keeps in sync with the corresponding database hosted on Azure Mobile
Services. �at is, whenever the My Stu� app encounters a �le it checks the
local Giving and Receiving database tables if it has a record associated with
the �le of the same path. If it does, we populate View Models with all relevant
information. User Interface Views bind to this View Model and display the
corresponding information in the ui whenever it is available, as can be seen in
Fig. 24b.

6.6 conclusion

In this chapter we conducted an analysis of contemporary cloud architectures, we
developed a simple cloud service and companion mobile app following tutorials
and best practices to better understand the interactions and transactions between
themobile and the various technologies thatmake up the Cloud. We then applied
the lessons we learned from this analysis to the design and development of the
My Stu� prototype. �e design was also shaped through countless interactions
with researchers and fellow interns at the Human Experience and Design group
during a three-month internship at Microso� Research in Cambridge. I tested
the prototype in Cambridge across a variety of di�erent devices and in di�erent
settings – at work, at home, in the pub, and on the bus – to ensure that prototype
works as expected. A�er completing the internship I returned to Cape Town,
to evaluate and further develop and re�ne the prototype and the theories and
approaches it embodies (see Bardzell et al. 2015).

7 relocating & rearchitecting

7.1 introduction

In the previous chapters, we have expanded theMy Stu� prototype to leverage
new APIs introduced in wp8.1 and to interface with the Cloud through a service
we implemented on the Azure Mobile Services platform. While the perspec-
tives and experiences we gained studying and designing for communication
and sharing practices in rural and urban South African contexts informed the
design of theMy Stu� prototype I developed during a three-month internship at
Microso� Research in Cambridge, uk, I also extended the empirical focus of this
research undertaking to include the Cloud – or rather to include the technologies,
design patterns, and engineering (best) practices, that are rendered invisible
and immaterial by the Cloud metaphor. A�er the internship, with a functioning
prototype in hand, I returned to Cape Town, with the goal of evaluating the
prototype through a user study, but quickly discovered that the prototype didn’t
quite work in the same way in Cape Town than it did in Cambridge. In this
chapter I instead interrogate and further develop theMy Stu� prototype by inves-
tigating the subtle, but salient, di�erences that technologies are confronted with
when they travel and the consequences these di�erences have for this research
undertaking: to design tools for and better understand what it means to possess
something digital in the age of the mobile and the cloud.

7.2 background

�is relocation coincided with e�orts to formalise two research groups at the
Centre in ict for Development at the University of Cape Town, which I had the
privilege of attending and shaping:

In our Networks research group we design innovative architectures
that make communication systems more
exible and accessible
in developing countries. �rough simulation and experimental
techniques, we tackle a range of network performance and service
provision issues, including how to improve network performance
and resource utilisation to make the most out of developing regions’
limited network infrastructure and expensive bandwidth. On a
small scale, we focus on localizing networking technologies through
community wireless mesh networks and community cloud comput-
ing. On a large scale, we explore Internet performance engineering
through so�ware de�ned networking.

As digital technologies facilitate and expand online – and o�ine
– creative capabilities, our Creative Digital Media research group
extends digital participation among young creatives. As many of
these technologies are designed in the context of abundant material
resources, they are o�en a poor �t for young creatives from resource-
constrained backgrounds. �rough a variety of methods, technical
and creative, we explore these relationships and tensions, with a
focus on implications for practical designs. �is research, at the
intersection of creative arts, anthropology, information technology,
andmedia studies, is driven and inspired by a human-�rst approach.

Although these groups were respectively lead by computer scientists and
media & communication scholars, we quickly discovered overlaps and shared

81

82

interests, albeit coming from di�erent perspectives, and began to form a latent
community of purpose that proved fertile and stimulating place to discuss and
relate my research.
�rough their in-depth studies, communications scholars have for decades

provided evidence that there is no such thing as a singular, global Internet
(Miller & Slater 2001; Donner 2015). �ese studies tend to see the Internet
as social and cultural phenomenon and focus on issues that surround access,
adoption, and appropriations of “the Internet”. Without discounting the invalu-
able contributions these studies make, few have considered in much depth what
we might call the technical stu� that undergird the Internet: the cables, plugs,
routing and peering arrangement, disks and data-centers, protocols and servers.
Nowadays we are probably more inclinded to call this complex arrangement of
stu� “the Cloud”, as we did in the previous chapter, but the same gap between real
and virtual, between moniker and material, still exists. However as Hu points
out, “the gap between the real and the virtual betrays a number of less studied
consequences, some of which are benign and some of which are not” (Hu 2015,
x). It is these consequences – benign or not – that we turn to in this chapter. In
doing so, we follow in the steps of commentators like Hu (2015) and Dourish
(2015a) but extend their work by considering how location a�ects how we use –
and don’t use (see, Baumer et al. 2015) – the Cloud.
Relocating with the prototype that I developed at Microso� Research in Cam-

bridge, uk back to the University of Cape Town, I was following precisely those
information and innovation
ows that Lucy Suchman characterizes as both
dominant and asymmetric (2002). �ey are dominant in the sense that centres
of research & development, such as the Microso� Research Lab in Cambridge
or those found in Silicon Valley, “maintain a disproportionate hold over the
distribution of at least computer-based information technology” (Suchman
2002, 139). And they are asymmetric in the sense that information technologies

ow outward to be adopted and appropriated elsewhere. While developing the
prototype in Cambridge, we did not have to contend with e�ects that mostly
surface around the margins and edges of the Internet – most notably cost and
latency – and which we would discuss at length and in depth during seminars,
meetings, reading groups, and chats within and between the networking and
creative media research groups.

7.3 findings

A primary motivation for developing the My Stu� prototype was to convey
a stronger sense of ownership and control over the stu� that is stored on the
mobile. Access and seeing an overview of what you have is a crucial �rst step in
that direction, as we saw in the previous chapter. However these aspects were
signi�cantly in
uenced by not only how fast your connection to the Internet is,
but just as importantly, where you are located on the Internet.

7.3.1 Latency

When I �rst launched the My Stu� app upon returning to Cape Town, it took
noticabley longer for the app to launch. About �ve seconds. Even on a strong
and, especially for South African standards, fast 3g connection. Switching to a
2g network would cause further delays (about seven seconds) and sometimes
the app would crash.
In the previous chapter, I documented how I had followed the design guide-

lines and tutorials of the Azure Mobile Service. While developing the app in
Cambridge I was mindful of the South African context I had come from and
made sure that the app works when not connected to the internet. To be sure, if
I put the phone in Airplane mode, the app would only take a second or two to

83

Figure 25: Africa’s undersea cables

launch, depending on how many other applications were running at the time.
About as long as the Files app that we discussed in Chapter 5. �is made sense,
since when the app �rst launches it checks if there is internet connectivity. If
there is, the app initialises and synchronises the database. If there isn’t, the app
only initialises the database but skips the synchronisation process. So we have
found the cause of the delay: the synchronisation step.
Synchronisation is handled by the Azure Mobile Services client api through

two methods – PushAsync and PullAsync – that we described in the previous
chapter. In a nutshell these methods �rst identify the records that have updated
since the last synchronisation event. �en the Azure Mobile Services client api
issues an http get request for each new or updated record on the server side
and an http post or patch request for each new or updated record on the client
side, respectively. An http delete request is issued for records that have been
deleted. Setting aside the calls that are made to the api server to establish which
records have changed, the ams client api issues one http request per record
that has changed.
�e round trip delay for a data package to travel between Cambridge and

Dublin, where our api server is located, is about 10ms-15ms. Between Cape Town
and Dublin that round trip delay increases to 200ms-250ms. Had I situated the
Azure Mobile Services instance in the usa instead of Ireland, these latencies
climb to as much as 350ms. O�entimes these latencies compound when, as in
our case, multiple requests need to be made and processed. Or in the case of
https, three roundtrip exchanges are need for the handshake, before the actual
request is made. For reference, humans can detect visual stimuli within 150-
200ms (Amano et al. 2006), so these delays are noticeable and signi�cant. And
they are also unavoidable. For internet transmissions between continents are
enabled through undersea �bre-optic cables (see �g. 25), and these transmissions
are limited by the speed of light.

7.3.2 Intermediaries

�ere are, however, strategies to lessen the e�ects. Most notably through inter-
mediary content caches and proxies. �e University of Cape Town, for instance,
uses an http proxy server to (1) monitor, shape, and limit how much bandwidth
students are using and (2) cache content that is requested and serve it to subse-

84

quent requests to speed up access and conserve bandwidth. In Cambridge, I had
direct (unproxied) access to the Internet.
In earlier chapters we have already seen howour gi�ing �ction exposed theway

in which the representational forms throughwhich data is primarily encountered
on Windows Phone and Android platforms – as a stream of data, rather than as
a �le – constrain the manipulations that are possible on that data. For instance,
that it can’t be deleted! In Cambridge, I had implemented this gi�ing case study
on the My Stu� prototype and by relocating to Cape Town and experiencing this
di�erent access type, the gi�ing scenario again surfaced subtle but consequential
e�ects.
To increase e�ciency I made a couple of changes to the implementation of

the gi�ing action on the api server, compared to how I implemented the action
in Chapter 2. Instead of modeling giving a gi� as two discrete steps, (1) creating
the gi� and (2) uploading the �le, each requiring a separate http request, I
combined them into a single request that I outlined in simpli�ed form.

HTTP Resquest to Send Gift with JSON body and contents of file (selfie.jpg) to be gifted.

POST http://mystuffservice.azure-mobile.net/api/gift

Content: application/json

{

"userId": "thomas",

"receiverId": "alex",

"filename": "selfie.jpg"

}

Content-type: image/jpg

#Stream content of selfie.jpg

Upon receiving the request the server responds:

HTTP Response to sender (thomas)

201 (Created)

{

"giftId": "t1",

"userId": "thomas",

"receiverId": "alex",

"filename": "selfie.jpg",

"status": "pending"

}

And sends a push noti�cation to the receiver, notifying them of the gi� that
awaits them.

Push notification to receiver (alex)

{

"giftId": "a1",

"userId": "alex",

"senderId": "alex",

"filename": "selfie.jpg",

"accessToken": "secret"

}

Following this pattern, I also changed the way in which gi�s are received.
Instead of �rst requesting and downloading the �le and subsequently acknowl-
edging its receipt in a separate request, I combined both actions into a single
http request:

85

// HTTP Resquest to receive a gift with JSON body

GET http://mystuffservice.azure-mobile.net/api/gift

Content: application/json

{

"giftId": "a1",

"userId": "alex",

"senderId": "alex",

"filename": "selfie.jpg",

"accessToken": "secret"

}

�e corresponding server responses are shown below:

HTTP Response to receiver (alex)

200 (OK)

Data stream of contents of selfie.jpg file

�is time the server sends a push noti�cation to the sender so both the server
and the sender can delete the �le.

Push notification to sender (thomas)

{

"giftId": "t1",

"userId": "thomas",

"receiverId": "alex",

"filename": "selfie.jpg",

"status": "received"

}

Server & client delete files

By combining these actions into a single request for sending and receiving a
gi�, I was trying to treat the webserver like a network switch, whereby the api
server upon receiving the get request, authenticates it, locates the corresponding
blob reference and streams the content of the blob to the client app, which in turn
saves the stream to a �le. Finally, the api server marks the transfer as complete
to:

(1) ensure that future request to the above URL return a ‘404 Not Found’ error.
(2) so a periodically running server-side task can delete all blobs that have already

been downloaded.

(3) to notify the sender to delete the �le.

I had mapped giving a gi� onto the http post verb and receiving a gi� onto
the http get verb. �is seemed natural and worked well in Cambridge, where
my access to the internet was direct and unmediated. However, in Cape Town
my internet access was mediated by a proxy. For the most part, proxies are
transparent and do their job well; they speed up requests by serving cached
responses and conserve limited and expensive bandwidth in the process. I had,
however, failed to properly consider the semantics embedded in speci�c http
verbs. A popular discussion initiated by Evert (2009) on the programmers forum
StackOver
ow, with over 1000 upvotes and 300 stars, gets to the heart of the
issue. While a get request – just like any http request – can have a body, server

86

side semantics for get require that the body have no semantic meaning for the
request. My mistake was to require and derive meaning from the body. �is
mistake was of no consequence in Cambridge. But the proxy server in Cape
Town had a strict interpretation of the http speci�cation and dropped the body
when it forwarded the request to api server, which in turn didn’t know what to
do with a body-less request and returned an error.
I account for this mistake here to learn from it, but also to show that such

mistakes are part of programming. However the deeper issue is that in this case
good infrastructure – fast, direct internet access – masks problems with the
architecture – inappropriate choice of http verb.

7.3.3 Discussion

�e issues surrounding latencies that my relocation had surfaced were not iso-
lated to this research undertaking. To the contrary, they were a pervasive theme
in both the Networking and Creative Media research groups and deserve more
unpacking.
Consider the participants in Alette Schoon’s study of hip hop artists in a South

African township in Grahmstown and the ways in which they create and share
their tracks using Bluetooth and through Cloud-based �lesharing hosts (2016).

Bluetooth was seen as the easiest way to make an impact on a local
level in distribution of music. Some hip-hop artists simply adopted
a method of non-intervention, sharing the track with a few friends
and relying on them to distribute it via Bluetooth, while others
took a more active approach, and would ‘send out a lightie’, a young
boy, to go and ‘make his rounds’, walking around various streets
engaging with young people, actively sharing the track with anyone
he could �nd via Bluetooth. –(Schoon 2016, 106)

To reach a broader audience, artists in Schoon’s (2016) study also uploaded
their tracks onto the Data�lehost platform and shared links on social network-
ing sites and using messaging apps. Part of the allure of online sharing is the
metadata1 that surrounds the �le:

Data�lehost displayed one crucial bit of information that the hip-
hop artists would frequently visit the site to check: the download
counter which showed how many times the �le had been down-
loaded. Hip-hop artists would get incredibly excited once the down-
loads started approaching 500, as this signi�ed a hit. Rymgees was
particularly proud of the fact that his one song had more than 6000
downloads. –(Schoon 2016, 110).

What artists were unfortunately unaware of is how �les, along with their down-
load counters, are automatically removed a�er 90 days of inactivity. It only takes
a moments re
ection to understand, why artists aren’t drawn to more permanent
hosting platforms such as Soundcloud or YouTube, since they force listeners to
incur data costs every time they stream and listen to a song/video. Despite such
mismatches, participants in Schoon’s (2016) illustrate creative appropriations
and vernacular forms of design-in-use2 where audio �les are created on backyard
computers and shared locally across sd cards, usb
ash drives, andmobile phone
bluetoothing; and in the Cloud, on datasharing platforms such as Data�lehost,
and using Facebook and WhatsApp messaging.
Marion Walton calls such mobile media ecologies a form of “pavement inter-

net” to draw attention to the fact that “even as smartphone and feature phone

1. see Odom et al. (2012)
2. see Suchman (2002)

87

handsets increasingly emphasize cloud-based sharing of media, high prepaid
data costs mean that these ‘a�ordances’ can be una�ordable” and how such
‘digital materialities’ shape participation (2014, 451). �rough the case study
of a bystander video posted on the Facebook page of the Daily Sun3 showing
police brutality towards the Mozambican taxi driver Mido Macia, Walton high-
lights how people switch from costly Cloud services to collocated sharing and
messaging:

Over a quarter of comments on the Facebook post for the origi-
nal video were requests from readers who shared their cell phone
numbers, and BBM4 pins, asking other readers to send them their
own copy of the clip via WhatsApp or BBM . . . “�ose who r able
2 c de video plz watsapp it 4 m @[phone number anonymised]5.
�ese readers did not want to share the Macia video on Facebook
or YouTube, but wanted to pass it to their own WhatsApp contacts
or smuggle it via Bluetooth through the cracks of the pavement
internet.” –(Walton 2014, 456)

�ese case-studies elaborate socially rich and cost-conscious practices and lay
bare digital materialities we fail to consider when adopting the seamless rhetoric
of the Cloud.

7.4 rearchitecting

Furthermore these case study provoke us to re
ect on where a re-invigorated
�le abstractions and grammars of actions might work beyond individual Cloud
silos and within pavement internet ecologies.
For starters these case studies show howmobile phone numbers are a preferred

identi�er over, say, email addresses. And through the grammars of showing &
collecting that we explored in Chapter 4,My Stu� supports collocated sharing
through gestures6 of showing and telling. While not dependent on the Cloud,
such gestures of sharing e�ectively render the mobile datastore into a silo of
its own, a�ording no opportunities for �les to break free, for instance using
Bluetooth or Messaging. Unfortunately, the Windows Phone 8.1 api does not
support programmatic access to the Bluetooth Object Push Protocol, so we are
unable to prototype and explore such scenarios.
But theMy Stu� prototype is certainly guilty of functioning a Cloud silo. �at

is, it is not interoperable across di�erent clients, say for instance with an Android
app, and between Cloud services. �is is something that can be addressed.
However, allowing other clients to interact with the Cloud service using open
protocols also means giving up control. To demonstrate this let us return to the
gi�ing scenario. In the above �ndings we saw that its not possible to collapse
receiving a gi� into a single http get request. Changing the http verb from
get to post, will alleviate most of the issues we identi�ed earlier. However, it
still remains risky to remove the �le a�er the http post request to receive a gi�
is handled by the api server. For instance, even though the server completes
the request and marks the gi� exchange as complete, the data might have been
corrupted in transit, especially if it is transferred through high latency links or
over unreliable wireless networks. For instance, participants in Schoon’s (2016)
study o�en complained of timeouts and aborted transfers when they try to
upload or download their music tracks7. To mitigate against this, we need to
tease apart this single post request and create two separate ones: (1) to download

3. a South African tabloid.
4. Blackberry Messaging
5. �ose who are able to see the video please WhatsApp (message) it for me.
6. see Flusser (2014)
7. Personal communication (June 9th, 2015)

88

the contents of the �le, and (2) to con�rm the successful retrieval of the �le to
initiate deleting the copies that were created in transit.

// HTTP Resquest to receive a gift

GET https://mystuffservice.azure-mobile.net/gift/{giftId}/file

// Server authenticates request, finds gift record, ensures that the gift record

// has not been marked as complete, and locates the corresponding file.

// Server responds with:

// - stream of file content -- if above criteria are fulfill

// - error -- if above above criteria aren’t fulfilled

// HTTP Resquest to acknowledge file receipt

PUT http://mystuffservice.azure-mobile.net/gift/{giftId}

Content: application/json

{

"giftId": "a1",

"userId": "alex",

"senderId": "alex",

"filename": "selfie.jpg",

"status": "complete"

}

// Server marks gift record as complete, notifies the sender, and deletes file.

�is separation allows the client app to check if the �le download completed
successfully. If it was not successful the client can attempt to redownload the
�le. Once the download is successful, the client then needs to notify the server
to update its records. While this solution caters for failed downloads, it couples
together client and server side components in a way that we can’t guarantee
adherence to the exchange protocol we outlined above. �at is, if we were to
open up the api server and make it available to other clients that we did not
implement, who is to say that they would keep up with the housekeeping. For
instance, they might issue the get request to download the �le, without updating
the gi� record that it has been completed through the above put request.

7.4.1 Ensuring protocol adherence

To ensure that other clients can interact with the api server while adhering to
the exchange protocol, we can leverage cryptography, an idea that I borrow from
Bitcoin (see Antonopoulos 2015). �at is, when the �le-to-be-gi�ed is �rst
uploaded to the api server, the api server generates and uses an encryption
key to encrypt the �le before storing it on Azure Block Storage. Finally the
api server generates an md5sum8 hash of the stored �le and saves it along with
they encryption key. We leverage the md5sum hash to verify that the �le has
not changed while being transmitted. In e�ect four records are created and
persisted on the server database, as illustrated in �g. 26 through a (simpli�ed)
class diagram that represents the data schema of the database.
Like before the client requests the �le-to-be-gi�ed, expect this time the server

returns the encrypted �le contents:

// HTTP Resquest to receive a gift

GET https://mystuffservice.azure-mobile.net/ReceivedGift/{Id}/EncryptedFile

// Server authenticates the request, finds gift record, ensures that the gift record

8. https://en.wikipedia.org/wiki/Md5sum

89

Figure 26: Database schema to support the redesigned gi� exchange protocol.

// has not been marked as complete, and locates the corresponding encrypted file.

// Server responds with:

// - stream of encrypted file content -- if above criteria are fulfill

// - error -- if above above criteria aren’t fulfilled

As the �le is encrypted, the client is forced to request the key from the api
server. To access the key, the api server requires the client to send the correct
md5sum hash of the encrypted to the api endpoint:

// HTTP Resquest to receive encryption key

POST https://mystuffservice.azure-mobile.net/ReceivedGift/{Id}/Key

Content: application/json

{

"receivedGiftId": "a1",

"hash": "7abf361a90ba8b523b7b9277547da3e4"

}

// Server authenticates the request; finds gift, gift hash, and gift key records;

// checks that the client submitted hash matches the gift hash record.

// if the hashes DO NOT match the server returns an error.

// Otherwise, the server returns the encryption key, marks the gift exchange as complete,

// notifies the sender, and deletes the encrypted file.

Finally, the client app can decrypt the �le and the server can be sure that the
transfer is successful beforemarking it as complete and deleting �le copies hosted
in transit. Unlike before, these redesigned http endpoints respect the semantics
of common http methods, outlined in tbl. 2. Especially the get request that
we outlined above, now respects the convention that a “get method should
not have the signi�cance of taking an action other than retrieval” (RFC2616
1999), or in short, that get methods are safe. Additionally, get methods are
idempotent, a property that refers to “(aside from error or expiration issues)
the side-e�ects of N > 0 identical requests is the same as for a single request”
(RFC2616 1999). In our case, multiple get requests to the above api endpoint
will only ever retrieve the encrypted �le contents, or return an error, and carry
no additional side-e�ects. �e post request, according to the http speci�cation
does not need to be safe nor idempotent (RFC2616 1999). �e side e�ect of the

90

above post method is to initiate the state changes of the gi� and encrypted gi�
�le resources by marking the former as complete and deleting the latter.

Table 2: Summary of common http methods.

Method Description Idempotent Safe

get Reads a resource representation Yes Yes
post Creates a resource with the request payload No No

or initiates a data-handling process with state changes.
delete Deletes a resource representation No No
put Replace current resource representation with the request payload No No
patch Apply partial modi�cation to the current resource representation. No No

�e principles of these redesigned api endpoints – documented in the above,
rather lengthy and dry descriptions – can also be applied to the giving exchange
protocol of the previous chapter, and allow other clients, outside of our direct
control, to interact and transact with the api server. Such interoperability is
a strength of the http protocol, but requires us to respect its semantics and
conventions.

7.4.2 Dealing with Latency & Asynchronicity

We will spare the reader dry, low-level descriptions of the changes we imple-
mented to deal with issues surrounding latency and asynchronicity that our
relocation to Cape Town surfaced. Instead we adopt a higher level approach.
�e problem, expressed in a nutshell, is that asynchronous programming – or
rather dealing with asynchronous sources while programming – is complex.
�is is an issue that we already alluded to in the previous chapter, when trying
to display photo thumbnails in a simple scrollable list ui. I found it di�cult
to directly handle and display photo thumbnails because they needed to be re-
quested through an asynchronous method which returns a Future – stand-ins
for computational results that are initially unknown but may become available
or return an error at some later time. At the time and with moderate success –
in the sense that the app worked so long as the user didn’t scroll too quickly – I
was able to implement the logic to query these ansynchronous method, keep
track of the results, populate the ui once the results became available, and free
up resources when the thumbnails are no longer needed – when the user scrolls.
Daunted by the prospect of implementing a similar complex workaround, I
‘cheated’ when implementing the logic to synchronize the database. �at is, I
blocked the ui and displayed an initialization splash screen while I waited for
the asynchronous synchronization methods to complete and assumed that these
methods would complete. In Cambridge, as we discussed earlier, I got away
with this ‘cheat’ because I only needed to block the ui for an instant before the
synchronization completed. �e signi�cantly higher latencies that we experience
in Cape Town, however, exposed this ‘cheat’. Not only did the app take longer to
load, but would sometimes crash if the synchronization would timeout or be
otherwise disrupted.
Upon consulting with fellow interns from the Programming languages and

principles group at Microso� Research, who I had met while in Cambridge,
I learned how imperative programming paradigms treat state and events as
second class citizens and that I should consider re-implementing the app within
a functional-reactive paradigm. I then discovered the reactive extensions (Rx)
to the .NET framework (MSDN 2015) and the ReactiveUI library9. �e reactive
extensions are a library for “composing asynchronous and event-based programs

9. https://reactiveui.net/

91

using observable sequences and [. . .] query operators” (MSDN 2015) and the
Reactive ui library provides the framework for leveraging these libraries for
User Interfaces. �is approach to programming, however, requires a declarative
style that is more adept at expressing relationships between groups of things that
are changing and compose these into reactive pipelines. �at is, programming
becomesmore about describing what you want to happen (declarative) and when
it should happen (reactive) rather than how to do it (imperative). Re
ecting on
this issue, the in
uential mobile developer Jake Wharton notes that “having a
single asynchronous source will ultimately break the traditional imperative style
of programming we’re used to. Not ‘break’ in the sense that it stops working, but
in the sense that it pushes the complexity onto you [the programmer], and you
start losing the things that imperative programming is really good for” (2016).
�is functional reactive approach to (ui) programming, required a substantial
rewrite of theMy Stu� prototype, but using this approach I was able tomodel and
better respond to issues surrounding asynchronicity and latency and eliminate
the crashes and long loading times experienced on higher latency networks.
As this overview illustrates, programming tools and language constructs, such

as the Reactive Extensions, are only just catching up – or perhaps more accu-
rately, gaining the attention and advocacy in mobile developer communities they
deserve – to the di�culties and complexities of programming with asynchronous
sources. Especially in resource constraint contexts – where such complexities are
not onlymore likely to arise but also aremore consequential, this is of paramount
importance.

7.5 conclusion

In this chapter we have interrogated the subtle and insidious ways in which our
relocation to Cape Town, to the margins of the Internet, undermined our earlier
e�orts to develop tools to give people better awareness, ownership, and control
over the stu� that they store and share on their mobiles and in the Cloud. In
one extreme case, the combination of latency and unreliable wireless networks,
e�ectively locked the user out from accessing theMy Stu� datastore – the polar
opposite of the sense of digital possession I had intended to convey. Even if the
architecture supports and conveys strong ownership and control, this is of little
help, if the User Interface does not reinforce it. A�er all for the pc user, the �le
icon on the Desktop does as much work of giving a �le a sense of place as the
�le system does, and e�ectively work together to reinforce this sense of place.
Especially with the mobile we are invited to think about technology in global

terms (Toyama 2013) and the rhetoric and abstractions of the Cloud and popular
accounts of the Internet make it seem like place – where we are within the
network and where our stu� is stored – no longer matters. In the development
of the My Stu� prototype we have been leveraging the http protocol, at the
highest level of abstraction in the osi stack: the application layer (Silberschatz
et al. 2013, 759). And the way such abstractions work is to relieve those doing
the programming from worrying about the underlying implementations details
and infrastructures. A�er all “computing infrastructure”, as Blanchette reminds
us, “is precisely task with relieving users and programmers from the speci�cs
[sic] constraints of the material resources of computation” (2011, 1042). �e
placeless rhetoric of the Cloud combined with such programming abstractions
are deeply engrained and are, in practice, di�cult to escape. Our relocation
exposed these biases. And the digital materialities of South African media
ecologies, call into question the power and politics of having a local database
that periodically needs to be brought into sync with the master version, stored in
the Cloud, as the Azure Mobile Services tutorials and reference implementations
advocate. We have found inspiration in the multifaceted and cost-conscious
media sharing practices in South Africa that highlight the value of metadata

92

and the need for mobile media to travel freely across and between local mobile
media materialities that foreground SD-cards, usb sticks, and Bluetooth and the
Cloud. �e rearchitectedMy Stu� prototype – enriched through its relocation –
is an important step in that direction.

8 conclusion

We began this dissertation with a deceptively simple question – Does Windows
Phone 8 support gi�ing? – and have seen our attempts to answer that question
transformed into a whole range of concerns: locating this research undertaking
within the computing architectures of our time – the mobile and the Cloud –
and setting it into correspondence with rich human communication and sharing
practices as well as the human values such practices articulate. It is through
gi�ing that we are forced to think of digital objects less as some immaterial, vir-
tual entity, but more as something physical, something with material properties
and social signi�cance. In short, gi�ing not only demands, but also focuses a
material perspective of information.
�rough this perspective, we have studied multiple mobile platforms – Win-

dows Phone 8, Android, and Windows Phone 8.1 – and interrogated, compared,
and contrasted how we encounter objects, or rather photos more speci�cally, on
those mobile platforms and the representation practices and digital materialities
these encounters manifest. For instance, we have seen that the changing land-
scape of computing – one that is moving from the desktop to the mobile – is
mirrored in a corresponding shi� in the core abstraction of how data is repre-
sented in computing architecture and funnelled through interfaces: from a File
to a DataStream, the latter of which does not support gi�ing. And thus, we
found our initial question transformed to now consider the interplay between
the mobile datastore and the mobile sharing interface as a problematic site with
opportunities for redesign.
�ese technical investigations, however, took us further and further away from

the human communication and sharing practices we endeavoured to support.
Recent scholarship on digital materialities of information, advocates for “investi-
gations that are simultaneously technical, social and cultural, and that seek to �nd,
with the particular con�gurations of code and digital objects, manifestations
of and provocations for the cultural setting in which they are developed and
deployed” (Dourish 2017, 57, added emphasis). While this research undertaking
in large part a�rms this perspective, I worry about the temporal association
of the word I emphasised: simultaneously. �e research of this dissertation on
a whole is, rather, concomitantly technical, social, and cultural. �e research I
have documented in this dissertation, show that a temporal simultaneity of the
technical, social, and cultural is di�cult to achieve in practice. I tend to think of
myself more as a snorkeler exploring a reef, taking a deep breath as I dive down
into the technical realities of the mobile and explore this material, studying its

uxes and
ows as well as the ways in which it is pliable or recalcitrant. But
with such technical investigations that involve programming, I am, as Phil Agre
points out, placing myself “imaginatively inside the system” (1995, 73). And so,
like the snorkeler, it is important for us to come up for air and to sustain our
concomitant approach by placing technical concerns into correspondence with
social and cultural practices.
And this is preciselywhatwe did, by sensitising ourselves to issues surrounding

identity performance, context, storytelling, and communication, but also to look
at our unique and diverse, but also resource-constrained South African context.
We identi�ed co-located interactions as a salient design space that we explored
through a of technology probe to further interrogate themobile sharing interface.
�ese investigations lead us to develop an early datastore prototype, a co-present
photo gallery, tailored to how people present their stu� (and themselves in the
process) to those that surround them. Just like with the previous gi�ing �ction
and technology probe, the prototype attempted to work around the incongruence
with the speci�c ways in which information is passed between datastore and

93

94

sharing interface. Just as these deeper concerns were developing, Microso�
announced a major architectural change to the Windows Phone platform that
re-introduced the �le as a major component of the Windows Phone 8.1 platform,
datastore, and sharing interface.
We studied those architectural changes and contextualised these in the history

of the �le, which showed a strange juxtaposition, that despite their central role
in system design, �les seem outdated in our increasingly networked and mobile
lives. Looking at howWindows Phone 8.1 attempts to re-surface �les through
the Filesmanager were, however, muddled. Closer investigations revealed that
the extended grammar of action that Files, in contrast to pc �le managers, now
support create proliferations of copies that designers of earlier systems sought to
avoid (see Smith et al. 1982). We leveraged these newly introduced APIs, and
created a prototype datastore,My Stu�, to tidy up the muddle and further our
investigation.
We took this investigation to the Human Experience and Design research

group at Microso� Research in Cambridge, uk where we integrated our material
perspective with the nascent �eld of research – pioneered in Cambridge – that
positions the stu� that people store and share on their personal devices and in the
Cloud as digital possessions, which orients us to the social and moral dimensions
of that stu�. LeveragingMy Stu�, we prototyped extended �le abstractions to
incorporate metadata surrounding social exchanges to better support notions
of digital possession especially when these possession move through the Cloud.
A topic that we explored, by studying contemporary cloud architectures and
developing a Cloud service to support new grammars of action – to give a copy
& to gi� – which we implemented on theMy Stu� prototype.
Finally, we relocated our research back to Cape Town only to discover that

theMy Stu� prototype and Cloud service did not work in the same way it did in
Cambridge. �is lead us to interrogate – contrary to the rhetoric of the Cloud
– how physical location a�ects our use of the Cloud. We uncovered how good
infrastructure can mask problems with computer architecture, and documented
how we re-architected theMy Stu� datastore and Cloud service to better cope
with the material realities of marginal internet connectivity. �is rearchitected
and Cloud service �nds its inspiration in local mobile media materialities and
sharing practices that articulate a need for mobile media to travel freely between
local media ecologies and the Cloud.

8.1 summary of contributions

�roughout this dissertation we have argued for a material perspective of infor-
mation and leveraged this perspective to study our contemporary computing
landscape. We demonstrated through a portfolio of prototypes a progressive
variation on theme: giving people better awareness and control over the stu� that
matters to them. �is portfolio foregrounds the need for more human-centred
computer architectures. Applying a material perspective to think of the stu� we
store and share on our mobile phones as a form of digital possession, as we have
demonstrated throughout this thesis, is a powerful generative metaphor.
Consequently the research presented in this dissertation contributes to and

advances the state of the art in three emerging research areas: thematerialities
of information, digital possessions, and research through design.
We contribute to wider research agendas surrounding the materialities of

information by extending its empirical to mobile architectures and scrutinising
at a foundational level the speci�c technological arrangements and interfaces that
constitute these architectures and the social consequences of these arrangements.
We have documented these, with what can at times seem like excruciating detail,
however:

95

As Blaauw & Brooks remark in their monumental study of com-
puter architecture, “when reading the professional paper describing
the architecture of a new machine, it is o�en di�cult to discern
the real design dilemmas, compromises, and struggles behind the
smooth, a�er-the-fact description” (1997, 7). Yet these, dilemmas,
the compromises, these struggles will increasingly matter, as the
so�ware infrastructure comes to mediate a breathtaking proportion
of social relations. –(Blanchette 2011, 1056)

We make similar contributions to wider research agendas into digital pos-
sessions by again extending the empirical focus to the mobile. We show how
contemporary mobile architectures do not support the age-old practice of gi�ing
nor notions of possession. We show how reinvigorated �le abstractions andmore
social grammars of action – prototyped on theMy Stu� app and Cloud service –
can support possession through better awareness and control. Relocating this re-
search between Cambridge and Cape Town show how appropriate architectures
are needed to cope with infrastructural realities along the edges of the Internet to
e�ectively transact and interact with Cloud services, and ultimately relate to one
another through its mediating in
uence. Foregrounding these realities – rather
than obscuring and abstracting away from them – are crucial and highlight
potentials for how redesigned �le abstractions can work across mobiles and the
Cloud.
Finally, we advance the state of the art of the Research through Design agenda,

by responding to Zimmerman et al.’s call to action to document the whole Re-
search through Design process, showing “how theories from other disciplines
were integrated” and beginning with the crucial �rst step: problem framing
(Zimmerman et al. 2010, 316). By interrelating the discussions, theories, and
commentators we engage throughout this process and showing how these inform
the design and develop of prototypes we provide further evidence of the central
role artefacts play for Research through Design methodologies. Galey & Ruecker,
for instance, show how prototypes on their own reify arguments, embody theory,
and articulate and contribute to knowledge (2010). �is is an idea that Bardzell
et al. �nd both interesting and provocative, but wonder “what that would look
like” in practice (2015). �is dissertation �lls in that gap.

8.2 limitations

Following Galey & Ruecker (2010), the prototypes we designed and developed as
part of this research make and embody important conceptual contributions that
are reinforced and annotated (see Löwgren 2013) through detailed descriptions
of the theories and insights from diverse academic disciplines. But we have
not investigated the use of theMy Stu� prototype through longitudinal trials.
Ideally such a study would see users use their own devices, already containing
their own data, to uncover the ways in which they appropriate the prototype.
In Cape Town, such a study would have been impossible to conduct since the
Windows Phone 8.1 platform has poor adoption. For studies that give users
devices with the prototype installed, it would be di�cult to isolate novelty e�ects
of using a new and unfamiliar device. While we might lament that the choice of
device is unfortunate, it is important to remember that the unfamiliarity and
novelty of the Windows Phone platform helped me better understand the digital
materialities of mobile architectures in the �rst place, by virtue of being able to
compare it to the way things are on Android.

96

8.3 future work

�is dissertation uncovers several opportunities for future work. Most notably
to port theMy Stu� prototype to the Android platform and investigate if the
Android Storage Framework would support the development of redesigned �le
abstractions. Given the high prevalence of Android devices, this would also
make it easier to design a longitudinal study where people can use their own
devices and would ultimately shed light on how users encounter and appropriate
design ideas and their manifestations. Additionally, it would be interesting to
see if such a prototype could be extended to support the mobile media sharing
practices of the participants of Schoon’s (2016) study, which we discussed in the
previous chapter, and that involve Bluetooth as well as Cloud services.
We remain intrigued by the insights, dilemmas, and opportunities our re-

locations a�orded us: once when we traveled from Cape Town to Cambridge,
reversing, and redirecting the pervasive and asymmetric information and in-
novation
ows and back to Cape Town again along those
ows (see Suchman
2002, 139). Actively seeking such relocations could form the basis of a design
practice that is itinerative rather than iterative.
“�e Cloud”, as Hu reminds us, “produces users rather than publics, and

therefore individual rather than collective action (2015, 147). Especially in our
South African context, commentators have noted that the ‘networked individual-
ism’ (Walton et al. 2012) and individualist logics (Bidwell 2014) embedded in
design can relegate communication genres and forms of sociality that emphasise
collectivity to the margins. An important area of future work is research into
mobile and cloud architectures to support collectives and commons: stu� that is
collectively owned.
�eMy Stu� prototype could further be leveraged to rethink the grammar of

delete. Our redesigned �le abstractions already account for and represent where
the copies of our �les are residing. Deleting a �le would therefore require coor-
dination of diverse and distributed datastores along with thoughtful interaction
design.
�ere is much work to be done, and this – like the work presented in this

dissertation – will be a substantial technical undertaking. But it is equally impor-
tant to remember the broader context in which this work is situated. Richard
Harper says it with so much compassion and eloquence that I give him the last
word:

when designers approach the “problem space” of the Cloud, for
example, they have to consider the ontological “sense” that their
designs provide. Do users come to trust in their relations to their
digital “stu�”? Does that trust resonate with how those people get
on with their lives, lives that are su�used with digital materials but
that are, also, essentially about material properties that stand as part
and parcel of their human endeavors? �ese are anthropological
concerns, as much as they are technological and design questions.
—(Harper 2014, 12).

bibliography

Agre, P. 1995. “Conceptions of the User in Computer Systems Design.” In�e
Social and Interactional Dimensions of Human–Computer Interfaces, edited
by Thomas, P., 67–106. Cambirdge, UK: CambridgeUniversity Press. (Cited
on pages 28, 93).

Álvaro. 2016. “Get Real Path from URI, Android KitKat New Storage Access
Framework - Stack Over
ow.” Accessed March 15. https://stackov
erflow.com/questions/20067508/get-real-path-from-uri-

android-kitkat-new-storage-access-framework?lq=1. (Cited
on pages 16, 23).

Amano, K., N. Goda, S. Nishida, Y. Ejima, T. Takeda, & Y. Ohtani. 2006.
“Estimation of the Timing of Human Visual Perception fromMagnetoen-
cephalography.” Journal of Neuroscience 26 (15): 3981–3991. doi: 10.1523/
JNEUROSCI.4343-05.2006. pmid: 16611814. (Cited on page 83).

Antonopoulos, A. M. 2015.Mastering Bitcoin: Unlocking Digital Cryptocurren-
cies. 1. ed. OCLC: 876351095. Beijing: O’Reilly. (Cited on page 88).

Ballendat, T., N. Marquardt, & S. Greenberg. 2010. “Proxemic Interaction:
Designing for a Proximity and Orientation-Aware Environment.” In ACM
International Conference on Interactive Tabletops and Surfaces: ITS ’10, 121–
130. New York, NY, USA: ACM. doi: 10.1145/1936652.1936676. (Cited
on page 37).

Banks, R. 2014. “Trust in Design.” In Trust, Computing, and Society, edited
by Harper, R. Cambirdge, UK: Cambridge University Press. (Cited on
pages 61, 63).

Barad, K. 2003. “Posthumanist Performativity: Toward an Understanding of
How Matter Comes to Matter.” Signs: Journal of Women in Culture and
Society 28 (3). (Cited on page 2).

Bardzell, J., & S. Bardzell. 2015. “Humanistic HCI.” Synthesis Lectures on
Human-Centered Informatics 8 (4): 1–185. doi: 10.2200/S00664ED1V01Y
201508HCI031. (Cited on pages 3, 5).

Bardzell, J., S. Bardzell, & L. K. Hansen. 2015. “Immodest Proposals: Re-
search�rough Design and Knowledge.” In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems: CHI ’15, 2093–
2102. New York, NY, USA: ACM. doi: 10.1145/2702123.2702400.
(Cited on pages 3, 4, 28, 80, 95).

Baumer, E. P. S., J. Burrell, M. G. Ames, J. R. Brubaker, & P. Dourish. 2015.
“On the Importance and Implications of Studying Technology Non-Use.”
interactions 22 (2): 52–56. doi: 10.1145/2723667. (Cited on page 82).

Bell, G., M. Blythe, & P. Sengers. 2005. “Making by Making Strange: Defamil-
iarization and the Design of Domestic Technologies.” ACM Trans. Comput.-
Hum. Interact. 12 (2): 149–173. doi: 10.1145/1067860.1067862. (Cited
on page 10).

Bidwell, N. J. 2014. “Moving the Centre to Design Social Media in Rural Africa.”
AI & SOCIETY (September 19): 1–27. doi: 10.1007/s00146-014-0564-
5. (Cited on page 96).

97

https://stackoverflow.com/questions/20067508/get-real-path-from-uri-android-kitkat-new-storage-access-framework?lq=1
https://stackoverflow.com/questions/20067508/get-real-path-from-uri-android-kitkat-new-storage-access-framework?lq=1
https://stackoverflow.com/questions/20067508/get-real-path-from-uri-android-kitkat-new-storage-access-framework?lq=1
http://dx.doi.org/10.1523/JNEUROSCI.4343-05.2006
http://dx.doi.org/10.1523/JNEUROSCI.4343-05.2006
16611814
http://dx.doi.org/10.1145/1936652.1936676
http://dx.doi.org/10.2200/S00664ED1V01Y201508HCI031
http://dx.doi.org/10.2200/S00664ED1V01Y201508HCI031
http://dx.doi.org/10.1145/2702123.2702400
http://dx.doi.org/10.1145/2723667
http://dx.doi.org/10.1145/1067860.1067862
http://dx.doi.org/10.1007/s00146-014-0564-5
http://dx.doi.org/10.1007/s00146-014-0564-5

98

Bidwell, N. J., T. Reitmaier, & K. Jampo. 2014. “Orality, Gender and Social
Audio in Rural Africa.” In Proceedings of the 11th International Conference on
the Design of Cooperative Systems: COOP’14, edited by Rossitto, C., Ciolfi,
L., Martin, D., & Conein, B., 225–241. Springer. doi: 10.1007/978-3-
319-06498-7_14. (Cited on page 10).

Bidwell, N. J., S. Robinson, E. Vartiainen, M. Jones, M. J. Siya, T. Reit-
maier, G. Marsden, & M. Lalmas. 2014. “Designing Social Media for
Community Information Sharing in Rural South Africa.” In Proceedings
of the Southern African Institute for Computer Scientists and Information
Technologists Annual Conference: SAICSIT ’14, 104–114. New York, NY, USA:
ACM. doi: 10.1145/2664591.2664615. (Cited on page 10).

Blaauw, G. A., & F. P. Brooks Jr. 1997. Computer Architecture: Concepts and
Evolution. 1st. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc. (Cited on page 95).

Blanchette, J.-F. 2011. “A Material History of Bits.” Journal of the American
Society for Information Science and Technology 62 (6): 1042–1057. doi: 10.
1002/asi.21542. (Cited on pages 22, 91, 95).

Bluetooth Users Against Bush. 2004. Accessed June 13, 2016. http://www.
bluetoothusersagainstbush.com/. (Cited on page 42).

boyd, d. 2008. “Why Youth (Heart) Social Network Sites:�e Role of Networked
Publics in Teenage Social Life.” In Youth, Identity, and Digital Media, edited
by Buckingham, D. Cambirdge, MA: MIT Press. http://papers.ssrn.
com/abstract=1345415. (Cited on page 37).

Bright, P. 2016. “OneCore to Rule�emAll: HowWindows Everywhere Finally
Happened.” May 20. Accessed May 23, 2016. http://arstechnica.com/
information- technology/2016/05/onecore- to- rule- them-

all- how- windows- everywhere- finally- happened/. (Cited on
page 51).

Buckingham, D. 2008. “Introducing Identity.” In Youth, Identity, and Digital
Media, edited by Buckingham,D., 1–20. Cambirdge,MA:MITPress. http:
//papers.ssrn.com/abstract=1345415. (Cited on pages 33–35).

Burke, P. 2013. “iPaulPro/aFileChooser.” Accessed April 2, 2016. https://
github.com/iPaulPro/aFileChooser. (Cited on page 16).

Chalfen, R. 1987. Snapshot Versions of Life.Madison, WI: University of Wiscon-
sin Press. (Cited on pages 34–36).

Chimero, F. 2013. “What Screens Want.” http://www.frankchimero.com/
writing/what-screens-want/. (Cited on page 10).

Clawson, J., A. Voida, N. Patel, & K. Lyons. 2008. “Mobiphos: A Collocated-
Synchronous Mobile Photo Sharing Application.” In Proceedings of the
10th International Conference on Human Computer Interaction with Mobile
Devices and Services: MobileHCI ’08, 187–195. New York, NY, USA: ACM.
doi: 10.1145/1409240.1409261. (Cited on page 36).

Dalsgaard, P. 2016. “Experimental Systems in Research�rough Design.” In
Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems: CHI ’16, 4991–4996. New York, NY, USA: ACM. doi: 10.1145/
2858036.2858310. (Cited on page 28).

Developers, A. 2016. “Storage Access Framework.” Accessed April 2. https:
//developer.android.com/guide/topics/providers/document-

provider.html. (Cited on page 22).

http://dx.doi.org/10.1007/978-3-319-06498-7_14
http://dx.doi.org/10.1007/978-3-319-06498-7_14
http://dx.doi.org/10.1145/2664591.2664615
http://dx.doi.org/10.1002/asi.21542
http://dx.doi.org/10.1002/asi.21542
http://www.bluetoothusersagainstbush.com/
http://www.bluetoothusersagainstbush.com/
http://papers.ssrn.com/abstract=1345415
http://papers.ssrn.com/abstract=1345415
http://arstechnica.com/information-technology/2016/05/onecore-to-rule-them-all-how-windows-everywhere-finally-happened/
http://arstechnica.com/information-technology/2016/05/onecore-to-rule-them-all-how-windows-everywhere-finally-happened/
http://arstechnica.com/information-technology/2016/05/onecore-to-rule-them-all-how-windows-everywhere-finally-happened/
http://papers.ssrn.com/abstract=1345415
http://papers.ssrn.com/abstract=1345415
https://github.com/iPaulPro/aFileChooser
https://github.com/iPaulPro/aFileChooser
http://www.frankchimero.com/writing/what-screens-want/
http://www.frankchimero.com/writing/what-screens-want/
http://dx.doi.org/10.1145/1409240.1409261
http://dx.doi.org/10.1145/2858036.2858310
http://dx.doi.org/10.1145/2858036.2858310
https://developer.android.com/guide/topics/providers/document-provider.html
https://developer.android.com/guide/topics/providers/document-provider.html
https://developer.android.com/guide/topics/providers/document-provider.html

99

Developers, G. 2015. “Google Cloud Messaging: Overview.” July 24. Accessed
September 8, 2015. https://developers.google.com/cloud-messa
ging/gcm. (Cited on page 73).

Dijck, J. van. 2008. “Digital Photography: Communication, Identity, Memory.”
Visual Communication 7 (1): 57–76. doi: 10.1177/1470357207084865.
(Cited on pages 10, 27, 77).

Donner, J. 2015.A�er Access: Inclusion, Development, and aMoreMobile Internet.
�e information society series. Cambridge, Massachusetts: �e MIT Press.
(Cited on page 82).

Dourish, P. 2004. “What We Talk About WhenWe Talk About Context.” Per-
sonal and Ubiquitous Computing 8 (1): 19–30. doi: 10.1007/s00779-003-
0253-8. (Cited on pages 34, 37, 38, 49).

. 2014. “NoSQL: �e Shi�ing Materialities of Database Technology.”
Computational Culture, no. 4. http://computationalculture.net/
article/no-sql-the-shifting-materialities-of-database-

technology. (Cited on pages 2, 3, 10, 21, 51).

. 2015a. “Not �e Internet, but �is Internet: How Othernets Illuminate
Our Feudal Internet.” In 5th Decennial Aarhus Conference on Critical Alter-
natives: AARHUS’15, 12. doi: 10.7146/aahcc.v1i1.21200. (Cited on
pages 10, 82).

. 2015b. “Packets, Protocols, and Proximity: �e Materiality of Internet
Routing.” In Signal Tra�c: Media Infrastructure and Globalization, edited
by Parks, L. & Starosielski, N. Urbana, IL: University of Illinois Press.
(Cited on page 2).

. 2017. �e Stu� of Bits: An Essay on the Materialities of Information.
Cambridge, Massachusetts: �e MIT Press. (Cited on page 93).

Dourish, P., & G. Bell. 2011. Divining a Digital Future: Mess and Mythology in
Ubibquitous Computing. Cambirdge, MA: MIT Press. (Cited on pages 28,
59).

Dourish, P., &M.Mazmanian. 2013. “Media asMaterial: Information Represen-
tations asMaterial Foundations for Organizational Practice.” InHowMatter
Matters, edited by Carlile, P. R., Nicolini, D., Langley, A., & Tsoukas,
H., 92–118. Oxford, UK: Oxford University Press. doi: 10.1093/acprof:
oso/9780199671533.003.0005. (Cited on pages 1–3, 21).

Downey, G. L. 1998.�eMachine inMe: An Anthropologist Sits Among Computer
Engineers. New York: Routledge. (Cited on pages 27, 28).

Evert. 2009. “HTTP GET with Request Body.” Accessed May 26, 2015. https:
//stackoverflow.com/questions/978061/http-get-with-requ

est-body. (Cited on page 85).

Farman, J. 2012.Mobile Interface �eory: Embodied Space and Locative Media.
Oxon, UK: Routledge. (Cited on page 3).

Fiveash, K. 2015. “AWS Outage Knocks Amazon, Net
ix, Tinder and IMDb in
MEGA Data Collapse.” September 20. Accessed December 2, 2015. http:
//www.theregister.co.uk/2015/09/20/aws_database_outage/.
(Cited on page 1).

Flusser, V. 1999.�e Shape of �ings: A Philosophy of Design. Edited by Math-
ews, A. London: Reaktion Books. (Cited on pages 29, 63).

. 2014. Gestures.Minneapolis: University of Minnesota Press. (Cited on
page 87).

https://developers.google.com/cloud-messaging/gcm
https://developers.google.com/cloud-messaging/gcm
http://dx.doi.org/10.1177/1470357207084865
http://dx.doi.org/10.1007/s00779-003-0253-8
http://dx.doi.org/10.1007/s00779-003-0253-8
http://computationalculture.net/article/no-sql-the-shifting-materialities-of-database-technology
http://computationalculture.net/article/no-sql-the-shifting-materialities-of-database-technology
http://computationalculture.net/article/no-sql-the-shifting-materialities-of-database-technology
http://dx.doi.org/10.7146/aahcc.v1i1.21200
http://dx.doi.org/10.1093/acprof:oso/9780199671533.003.0005
http://dx.doi.org/10.1093/acprof:oso/9780199671533.003.0005
https://stackoverflow.com/questions/978061/http-get-with-request-body
https://stackoverflow.com/questions/978061/http-get-with-request-body
https://stackoverflow.com/questions/978061/http-get-with-request-body
http://www.theregister.co.uk/2015/09/20/aws_database_outage/
http://www.theregister.co.uk/2015/09/20/aws_database_outage/

100

Frayling, C. 1993. “Research in Art and Design.” Royal College of Art Research
Papers 1 (1): 1–5. (Cited on page 5).

Galey, A., & S. Ruecker. 2010. “How a Prototype Argues.” Literary and Lin-
guistic Computing 25 (4): 405–424. doi: 10.1093/llc/fqq021. (Cited on
page 95).

Gallardo, J., & A. Singh. 2014. “Contracts and Pickers: Building Apps�at
Work Together on Windows – BUILD2014.” BUILD2014. https://chan
nel9.msdn.com/Events/Build/2014/2-520. (Cited on pages 56, 57).

Gaver, W. 2012. “What Should We Expect from Research �rough Design?”
In Proceedings of the 2012 ACM Annual Conference on Human Factors in
Computing Systems: CHI ’12, 937–946. New York, NY, USA: ACM. doi:
10.1145/2208516.2208538. (Cited on pages 39, 49).

Goffman, E. 1959.�e Presentation of Self in Everyday Life. New York, NY:
Anchor Books. (Cited on pages 33, 34, 36, 37, 49).

. 1961. Asylums. New York, NY: Anchor Books. (Cited on page 37).

Google Cloud Platform Live: Keynote from Urs Hölzle. 2014. March 25. https:
//www.youtube.com/watch?v=qokEYBNWA_0. (Cited on pages 65, 66).

Greenberg, S., N. Marquardt, T. Ballendat, R. Diaz-Marino, & M. Wang.
2011. “Proxemic Interactions:�eNewUbicomp?” interactions 18 (1): 42–50.
doi: 10.1145/1897239.1897250. (Cited on pages 32, 36, 37).

Hall, E. T. 1966. �e Hidden Dimension. New York: Doubleday. (Cited on
pages 32, 37, 49).

Hansen, L. K. 2014. “What’s in a Word?” interactions 21 (1): 22–23. doi: 10.
1145/2541248. (Cited on page 25).

Harper, R. 2010. Texture: Human Expression in the Age of Communications
Overload. Cambirdge, MA: MIT Press. (Cited on pages 31, 33, 34).

. 2014. “Introduction and Overview.” In Trust, Computing, and Society,
edited by Harper, R. Cambirdge, UK: Cambridge University Press. (Cited
on pages 76, 96).

Harper, R., & W. Odom. 2014. “Trusting Oneself: An Anthropology of Digital
�ings and Personal Competence.” In Trust, Computing, and Society, edited
by Harper, R. Cambirdge, UK: Cambridge University Press. (Cited on
pages 63, 77).

Harper, R., T. Regan, S. Izadi, K. A. Mosawi, M. Rouncefield, & S. Rubens.
2007. “Tra�cking: Design for the Viral Exchange of TV Content on Mobile
Phones.” In Proceedings of the 9th International Conference on Human Com-
puter Interaction with Mobile Devices and Services: MobileHCI ’07, 249–256.
New York, NY, USA: ACM. doi: 10.1145/1377999.1378015. (Cited on
pages 41, 42).

Harper, R., E. Thereska, S. E. Lindley, R. Banks, P. Gosset, W. Odom, G.
Smyth, & E. Whitworth. 2013. “What Is a File?” In Proceedings of the 2013
Conference on Computer Supported Cooperative Work: CSCW ’13, 1125–1136.
New York, NY, USA: ACM. doi: 10.1145/2441776.2441903. (Cited on
pages 29, 30, 60, 62, 63, 76).

Hollan, J., & S. Stornetta. 1992. “Beyond Being�ere.” In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems: CHI ’92, 119–
125. New York, NY, USA: ACM. doi: 10.1145/142750.142769. (Cited
on page 38).

http://dx.doi.org/10.1093/llc/fqq021
https://channel9.msdn.com/Events/Build/2014/2-520
https://channel9.msdn.com/Events/Build/2014/2-520
http://dx.doi.org/10.1145/2208516.2208538
https://www.youtube.com/watch?v=qokEYBNWA_0
https://www.youtube.com/watch?v=qokEYBNWA_0
http://dx.doi.org/10.1145/1897239.1897250
http://dx.doi.org/10.1145/2541248
http://dx.doi.org/10.1145/2541248
http://dx.doi.org/10.1145/1377999.1378015
http://dx.doi.org/10.1145/2441776.2441903
http://dx.doi.org/10.1145/142750.142769

101

Hu, T.-H. 2015. A Prehistory of the Cloud. Cambridge, Massachusetts: �e MIT
Press. (Cited on pages 82, 96).

Hutchins, E. 1995. Cognition in the Wild.MIT Press. (Cited on pages 33, 35).

. 2010. “Enaction, Imagination, and Insight.” In Enaction: Towards a New
Paradigm for Cognitive Science, edited by Stewart, J., Gapenne, O., & Di
Paolo, E. A., 425–450. Cambirdge, MA:�eMIT Press. http://mitpres
s.universitypressscholarship.com/view/10.7551/mitpress/

9780262014601.001.0001/upso- 9780262014601- chapter- 16.
(Cited on page 33).

Hutchinson, H., W. Mackay, B. Westerlund, B. B. Bederson, A. Druin,
C. Plaisant, M. Beaudouin-Lafon, et al. 2003. “Technology Probes:
Inspiring Design for and with Families.” In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems: CHI ’03, 17–24. New
York, NY, USA: ACM. doi: 10.1145/642611.642616. (Cited on page 39).

Ingold, T. 2000. �e Perception of the Environment: Essays on Livelihood,
Dwelling and Skill. Oxon, UK: Routledge. (Cited on pages 9, 41).

. 2007. Lines: A Brief History. Oxon, UK: Routledge. (Cited on page 49).

. 2011.BeingAlive: Essays onMovement, Knowledge andDescription.Oxon,
UK: Routledge. (Cited on pages 29, 76).

. 2013.Making: Anthropology, Archaeology, Art and Architecture.Oxon,
UK: Routledge. (Cited on pages 5, 28, 48).

. 2014. “Resonators Uncased: Mundane Objects or Bundles of A�ect?”
HAU: Journal of Ethnographic �eory 4 (1): 517–521. doi: 10.14318/hau4.
1.035. (Cited on page 77).

. 2015.�e Life of Lines. Oxon, UK: Routledge. (Cited on page 42).

Kindberg, T., M. Spasojevic, R. Fleck, & A. Sellen. 2005a. “�e Ubiquitous
Camera: An in-Depth Study of Camera Phone Use.” IEEE Pervasive Com-
puting 4 (2): 42–50. doi: 10.1109/MPRV.2005.42. (Cited on pages 10, 34,
35, 38, 39).

Kindberg, T., M. Spasojevic, R. Fleck, & A. Sellen. 2005b. “I Saw�is and
�ought of You: Some Social Uses of Camera Phones.” In CHI ’05 Extended
Abstracts on Human Factors in Computing Systems: CHI EA ’05, 1545–1548.
New York, NY, USA: ACM. doi: 10.1145/1056808.1056962. (Cited on
pages 9, 39).

Koskinen, I., J. Zimmerman, T. Binder, J. Redstrom, & S. Wensveen. 2011.
Design Research �rough Practice: From the Lab, Field, and Showroom.
Waltham, MA: Morgan Kaufmann. (Cited on page 28).

Lalonde, L., & D. R. Totzke. 2013. Windows Phone 8 Recipes: A Problem-
Solution Approach. OCLC: ocn839661114. Berkeley, CA: Apress. (Cited on
pages 44–46).

Law, J. 2004. A�er Method: Mess in Social Science Research. International Library
of Sociology. Oxon, UK: Routledge. (Cited on page 43).

Lefebvre, H. 2004. Rhythmanalysis: Space, Time and Everyday Life. Translated
by Elden, S. & Moore, G. Bloomsbury. (Cited on page 38).

Lindley, S. E., C. C. Marshall, R. Banks, A. Sellen, & T. Regan. 2013. “Re-
thinking the Web As a Personal Archive.” In Proceedings of the 22nd Inter-
national Conference onWorld Wide Web: WWW ’13, 749–760. International
World Wide Web Conferences Steering Committee. http://dl.acm.
org/citation.cfm?id=2488388.2488454. (Cited on pages 60, 63).

http://mitpress.universitypressscholarship.com/view/10.7551/mitpress/9780262014601.001.0001/upso-9780262014601-chapter-16
http://mitpress.universitypressscholarship.com/view/10.7551/mitpress/9780262014601.001.0001/upso-9780262014601-chapter-16
http://mitpress.universitypressscholarship.com/view/10.7551/mitpress/9780262014601.001.0001/upso-9780262014601-chapter-16
http://dx.doi.org/10.1145/642611.642616
http://dx.doi.org/10.14318/hau4.1.035
http://dx.doi.org/10.14318/hau4.1.035
http://dx.doi.org/10.1109/MPRV.2005.42
http://dx.doi.org/10.1145/1056808.1056962
http://dl.acm.org/citation.cfm?id=2488388.2488454
http://dl.acm.org/citation.cfm?id=2488388.2488454

102

Ling, R. S. 2008. New Tech, New Ties: How Mobile Communication Is Reshaping
Social Cohesion. Cambirdge, MA: MIT Press. (Cited on pages 3, 37, 38, 42).

Löwgren, J. 2013. “Annotated Portfolios and Other Forms of Intermediate-Level
Knowledge.” interactions 20 (1): 30–34. doi: 10.1145/2405716.2405725.
(Cited on page 95).

Löwgren, J., & E. Stolterman. 2004.�oughtful Interaction Design: A Design
Perspective on Information Technology. Cambirdge, MA: �e MIT Press.
(Cited on page 39).

Lucero, A., J. Holopainen, & T. Jokela. 2011. “Pass-�em-around: Collabora-
tive Use of Mobile Phones for Photo Sharing.” In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems: CHI ’11, 1787–1796.
New York, NY, USA: ACM. doi: 10.1145/1978942.1979201. (Cited on
pages 36, 47).

Malayeri, D. 2015. “Using O�ine Data Sync in Azure Mobile Apps.” Septem-
ber 10. Accessed September 10, 2015. https://github.com/Azure/
azure-content/blob/b9ccba8528/articles/app-service-mobi

le/app-service-mobile-windows-store-dotnet-get-started-

offline-data-preview.md. (Cited on page 70).

Manovich, L. 2001.�e Language of New Media. Leonardo. Cambridge, MA:
MIT Press. (Cited on page 8).

Marsden, G., A. Maunder, & M. Parker. 2008. “People Are People, but Tech-
nology Is Not Technology.” Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences 366 (1881): 3795–3804.
doi: 10.1098/rsta.2008.0119. (Cited on page 39).

Mauss, M. (1950) 2000.�e Gi�: �e Form and Reason for Exchange in Archaic
Societies. Translated by Halls, W. New York, NY: W.W. Norton. (Cited on
pages 8, 9, 34, 42).

Mawson,N. 2013. “SeacomSu�ers Cable Break.”March 25. AccessedDecember 2,
2015. http://www.itweb.co.za/index.php?option=com_content
&view=article&id=62711. (Cited on page 1).

McLeod, J. M., & S. H. Chaffee. 1973. “Interpersonal Approaches to Com-
munication Research.” American Behavioral Scientist 16 (4): 469–499. doi:
10.1177/000276427301600402. (Cited on page 38).

Microsoft. 2014. “Files – Windows Apps on Microso� Store.” Accessed May 14,
2016. https://www.microsoft.com/en-us/store/apps/files/
9wzdncrfj3pl. (Cited on page 55).

mikegr. 2013. “Android Gallery on KitKat Returns Di�erent Uri for In-
tent.ACTION GET CONTENT.” November 19. Accessed March 15, 2016.
http : / / stackoverflow . com / questions / 19834842 / android -

gallery- on- kitkat- returns- different- uri- for- intent-

action-get-content. (Cited on pages 16, 21, 23).

Miller, D., & D. Slater. 2001.�e Internet: An Ethnographic Approach.Oxford
; New York: Berg. (Cited on page 82).

Moore, G. 1965. “Cramming More Components onto Integrated Circuits.” Elec-
tronics (April 19): 114–117. (Cited on page 65).

MSDN. 2014. “�e MVVM Pattern.” Accessed April 8. https://msdn.micro
soft.com/en-gb/library/hh848246.aspx. (Cited on pages 44, 58).

. 2015. “Reactive Extensions.” Accessed August 10. https://msdn.
microsoft.com/en- us/library/hh242985%28v=vs.103%29.

aspx?f=255&MSPPError=-2147217396. (Cited on pages 90, 91).

http://dx.doi.org/10.1145/2405716.2405725
http://dx.doi.org/10.1145/1978942.1979201
https://github.com/Azure/azure-content/blob/b9ccba8528/articles/app-service-mobile/app-service-mobile-windows-store-dotnet-get-started-offline-data-preview.md
https://github.com/Azure/azure-content/blob/b9ccba8528/articles/app-service-mobile/app-service-mobile-windows-store-dotnet-get-started-offline-data-preview.md
https://github.com/Azure/azure-content/blob/b9ccba8528/articles/app-service-mobile/app-service-mobile-windows-store-dotnet-get-started-offline-data-preview.md
https://github.com/Azure/azure-content/blob/b9ccba8528/articles/app-service-mobile/app-service-mobile-windows-store-dotnet-get-started-offline-data-preview.md
http://dx.doi.org/10.1098/rsta.2008.0119
http://www.itweb.co.za/index.php?option=com_content&view=article&id=62711
http://www.itweb.co.za/index.php?option=com_content&view=article&id=62711
http://dx.doi.org/10.1177/000276427301600402
https://www.microsoft.com/en-us/store/apps/files/9wzdncrfj3pl
https://www.microsoft.com/en-us/store/apps/files/9wzdncrfj3pl
http://stackoverflow.com/questions/19834842/android-gallery-on-kitkat-returns-different-uri-for-intent-action-get-content
http://stackoverflow.com/questions/19834842/android-gallery-on-kitkat-returns-different-uri-for-intent-action-get-content
http://stackoverflow.com/questions/19834842/android-gallery-on-kitkat-returns-different-uri-for-intent-action-get-content
https://msdn.microsoft.com/en-gb/library/hh848246.aspx
https://msdn.microsoft.com/en-gb/library/hh848246.aspx
https://msdn.microsoft.com/en-us/library/hh242985%28v=vs.103%29.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/hh242985%28v=vs.103%29.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/hh242985%28v=vs.103%29.aspx?f=255&MSPPError=-2147217396

103

MSDN. 2016a. “PhotoResult Class.” Accessed March 8. https://msdn.micro
soft.com/en-us/library/microsoft.phone.tasks.photoresul

t(v=vs.105).aspx. (Cited on page 14).

. 2016b. “Picture Class Members.” Accessed March 4. https://msdn.
microsoft.com/en- us/library/microsoft.xna.framework.

media.picture_members.aspx. (Cited on page 14).

. 2016c. “PictureAlbum Class.” Accessed March 4. https://msdn.
microsoft.com/en- us/library/microsoft.xna.framework.

media.picturealbum_members.aspx. (Cited on page 15).

Myers, T. 2015. “Introduction to Microso� Azure Storage.” August 3. Accessed
September 1, 2015. https://github.com/Azure/azure-content/
blob/611f9feda9/articles/storage/storage-introduction.

md. (Cited on page 71).

Naaman, M., R. Nair, & V. Kaplun. 2008. “Photos on the Go: A Mobile Ap-
plication Case Study.” In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems: CHI ’08, 1739–1748. New York, NY, USA:
ACM. doi: 10.1145/1357054.1357326. (Cited on page 35).

Negroponte, N. 1993–1998. “WIRED Columns 1993-1998.” Accessed Decem-
ber 1, 2015. http://web.media.mit.edu/~nicholas/Wired/. (Cited
on page 1).

. 1995. “Being Digital - A Book (p)Review.”Wired, no. 2. http://web.
media.mit.edu/~nicholas/Wired/WIRED3- 02.html. (Cited on
page 1).

. 1996. Being Digital. New York, NY: Vintage Books. (Cited on page 1).

O’Hara, K. P.,M.Massimi, R. Harper, S. Rubens, & J.Morris. 2014. “Everyday
Dwelling with WhatsApp.” In Proceedings of the 17th ACM Conference on
Computer Supported Cooperative Work & Social Computing: CSCW ’14,
1131–1143. New York, NY, USA: ACM. doi: 10.1145/2531602.2531679.
(Cited on pages 3, 41).

Odom, W., A. Sellen, R. Harper, & E. Thereska. 2012. “Lost in Translation:
Understanding the Possession ofDigital�ings in theCloud.” InProceedings
of the SIGCHI Conference on Human Factors in Computing Systems: CHI ’12,
781–790. New York, NY, USA: ACM. doi: 10.1145/2207676.2207789.
(Cited on pages 60–63, 86).

Odom, W., J. Zimmerman, & J. Forlizzi. 2011. “Teenagers and �eir Virtual
Possessions: DesignOpportunities and Issues.” In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems: CHI ’11, 1491–1500.
New York, NY, USA: ACM. doi: 10.1145/1978942.1979161. (Cited on
page 60).

. 2014. “Placelessness, Spacelessness, and Formlessness: ExperientialQual-
ities of Virtual Possessions.” In Proceedings of the 2014 Conference on De-
signing Interactive Systems: DIS ’14, 985–994. New York, NY, USA: ACM.
doi: 10.1145/2598510.2598577. (Cited on pages 60, 61, 76).

Oram, A., & G. Wilson, eds. 2007. Beautiful Code. 1st. ed. �eory in practice
series. OCLC: ocn163289538. Beijing ; Sebastapol, Calif: O’Reilly. (Cited on
page 46).

Rainie, L., & B. Wellman. 2012. Networked: �e New Social Operating System.
Cambirdge, MA: MIT Press. (Cited on page 42).

https://msdn.microsoft.com/en-us/library/microsoft.phone.tasks.photoresult(v=vs.105).aspx
https://msdn.microsoft.com/en-us/library/microsoft.phone.tasks.photoresult(v=vs.105).aspx
https://msdn.microsoft.com/en-us/library/microsoft.phone.tasks.photoresult(v=vs.105).aspx
https://msdn.microsoft.com/en-us/library/microsoft.xna.framework.media.picture_members.aspx
https://msdn.microsoft.com/en-us/library/microsoft.xna.framework.media.picture_members.aspx
https://msdn.microsoft.com/en-us/library/microsoft.xna.framework.media.picture_members.aspx
https://msdn.microsoft.com/en-us/library/microsoft.xna.framework.media.picturealbum_members.aspx
https://msdn.microsoft.com/en-us/library/microsoft.xna.framework.media.picturealbum_members.aspx
https://msdn.microsoft.com/en-us/library/microsoft.xna.framework.media.picturealbum_members.aspx
https://github.com/Azure/azure-content/blob/611f9feda9/articles/storage/storage-introduction.md
https://github.com/Azure/azure-content/blob/611f9feda9/articles/storage/storage-introduction.md
https://github.com/Azure/azure-content/blob/611f9feda9/articles/storage/storage-introduction.md
http://dx.doi.org/10.1145/1357054.1357326
http://web.media.mit.edu/~nicholas/Wired/
http://web.media.mit.edu/~nicholas/Wired/WIRED3-02.html
http://web.media.mit.edu/~nicholas/Wired/WIRED3-02.html
http://dx.doi.org/10.1145/2531602.2531679
http://dx.doi.org/10.1145/2207676.2207789
http://dx.doi.org/10.1145/1978942.1979161
http://dx.doi.org/10.1145/2598510.2598577

104

Reese, G. 2009. Cloud Application Architectures: Building Applications and In-
frastructure in the Cloud. Sebastopol, CA: O’Reilly. (Cited on pages 63–
65).

Reitmaier, T. 2011. “‘She Looked Deep into Our Eyes:’ Re
ections on Cross-
Cultural Practice.” In Proceedings of the Indigenous Knowledge Technology
Conference: Embracing Indigenous Knowledge Systems in a New Technol-
ogy Design Paradigm: IKTC ’11, edited by Bidwell, N. J. & Winschiers-
Theophilus, H., 100–107. Windhoek, Namibia. (Cited on pages 3, 36).

Reitmaier, T., P. Benz, & G. Marsden. 2013. “Designing and�eorizing Co-
Located Interactions.” In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems: CHI ’13, 381–390. New York, NY, USA: ACM.
doi: 10.1145/2470654.2470709. (Cited on page III).

Reitmaier, T., N. J. Bidwell,&G.Marsden. 2011. “SituatingDigital Storytelling
Within African Communities.” International Journal of Human-Computer
Studies 69 (10): 658–668. doi: 10.1016/j.ijhcs.2010.12.008. (Cited
on pages 10, 35).

Reitmaier, T., N. J. Bidwell, M. Siya, G. Marsden, & W. D. Tucker. 2012.
“Communicating in Designing an Oral Repository for Rural African Vil-
lages.” In Proceedings of IST-Africa: Regional Impact of Information Society
Technologies in Africa: IST-Africa ’12. Dar es Salem, Tanzania. (Cited on
pages 10, 25).

RFC2616. 1999. “HTTP/1.1: Method De�nitions.” Accessed April 2, 2015. https:
//www.w3.org/Protocols/rfc2616/rfc2616-sec9.html. (Cited
on page 89).

Robinson, S., J. Pearson, T. Reitmaier, S. Ahire, & M. Jones. 2018. “Make
Yourself at Phone: Reimagining Mobile Interaction Architectures With
Emergent Users.” In Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems: CHI ’18. New York, NY: ACM. doi: 10.1145/
3173574.3173981. (Cited on page III).

Rogers, Y. 2012. “HCI�eory: Classical, Modern, and Contemporary.” Synthesis
Lectures on Human-Centered Informatics 5 (2): 1–129. doi: 10.2200/S004
18ED1V01Y201205HCI014. (Cited on pages 39, 49).

Schön, D. A. 1983.�e Re
ective Practitioner: How Professionals �ink in Action.
New York: Basic Books. (Cited on page 3).

Schoon, A. 2016. “Distributing Hip-Hop in a South African Town: From the
Digital Backyard Studio to the Translocal Ghetto Internet.” In Proceedings
of the First African Conference on Human Computer Interaction: AfriCHI’16,
104–113. New York, NY, USA: ACM. doi: 10.1145/2998581.2998592.
(Cited on pages 86, 87, 96).

Sengers, P., K. Boehner, S. David, & J. ’. Kaye. 2005. “Re
ective Design.” In
Proceedings of the 4th Decennial Conference on Critical Computing: Between
Sense and Sensibility: CC ’05, 49–58. New York, NY, USA: ACM. doi: 10.
1145/1094562.1094569. (Cited on page 39).

Sengers, P., & B. Gaver. 2006. “Staying Open to Interpretation: Engaging
Multiple Meanings in Design and Evaluation.” In Proceedings of the 6th
Conference on Designing Interactive Systems: DIS ’06, 99–108. New York, NY,
USA: ACM. doi: 10.1145/1142405.1142422. (Cited on page 39).

Shove, E., ed. 2007.�e Design of Everyday Life. Cultures of consumption series.
New York, NY: Berg. (Cited on page 34).

Silberschatz, A., P. B. Galvin, & G. Gagne. 2013. Operating System Concepts.
9th. New York, NY: Wiley. (Cited on pages 23, 29, 60, 61, 63, 64, 91).

http://dx.doi.org/10.1145/2470654.2470709
http://dx.doi.org/10.1016/j.ijhcs.2010.12.008
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://dx.doi.org/10.1145/3173574.3173981
http://dx.doi.org/10.1145/3173574.3173981
http://dx.doi.org/10.2200/S00418ED1V01Y201205HCI014
http://dx.doi.org/10.2200/S00418ED1V01Y201205HCI014
http://dx.doi.org/10.1145/2998581.2998592
http://dx.doi.org/10.1145/1094562.1094569
http://dx.doi.org/10.1145/1094562.1094569
http://dx.doi.org/10.1145/1142405.1142422

105

Silberschatz, A., H. F. Korth, & S. Sudarshan. 2011. Database System Con-
cepts.McGraw-Hill. (Cited on pages 29, 69).

Simmons, B. 2015. “Learn How Vesper Built O�ine Sync Using Azure Mobile
Services.” Accessed August 11. https://channel9.msdn.com/Blog
s/Windows-Azure/Learn-how-Vesper-built-offline-sync-

using-Azure-Mobile-Services-. (Cited on page 66).

Smith, D. C., C. Irby, R. Kimball, & E. Harslem. 1982. “�e Star User Interface:
An Overview.” In Proceedings of the June 7-10, 1982, National Computer
Conference: AFIPS ’82, 515–528. New York, NY, USA: ACM. doi: 10.1145/
1500774.1500840. (Cited on pages 30, 58, 61, 94).

“Snapchat.” 2014. Accessed March 12, 2014. https://play.google.com/st
ore/apps/details?id=com.snapchat.android. (Cited on pages 25,
26).

Star, S. L. 2010. “�is Is Not a Boundary Object: Re
ections on the Origin
of a Concept.” Science, Technology & Human Values 35 (5): 601–617. doi:
10.1177/0162243910377624. (Cited on page 29).

Stolterman, E., & M. Wiberg. 2010. “Concept-Driven Interaction Design
Research.” Human–Computer Interaction 25 (2): 95–118. doi: 10.1080/
07370020903586696. (Cited on page 28).

Suchman, L. 2002. “Practice-Based Design of Information Systems: Notes from
the Hyperdeveloped World.”�e Information Society 18 (2): 139–144. doi:
10.1080/01972240290075066. (Cited on pages 82, 86, 96).

. 2007. Human-Machine Recon�gurations: Plans and Situated Actions.
2nd ed. Cambirdge, UK: Cambridge University Press. (Cited on pages 2, 28,
33, 35, 38, 40, 49).

Suchman, L., R. Trigg, & J. Blomberg. 2002. “Working Artefacts: Ethnometh-
ods of the Prototype.”�e British Journal of Sociology 53 (2): 163–179. doi:
10.1080/00071310220133287. (Cited on pages 28, 39).

Support, R. 2013. “Understanding the Cloud Computing Stack: SaaS, PaaS,
IaaS.” October 22. Accessed July 24, 2015. http://www.rackspace.c
om/knowledge_center/whitepaper/understanding-the-cloud-

computing-stack-saas-paas-iaas. (Cited on pages 64, 66).

Taylor, A. S., & R. Harper. 2003. “�e Gi� of the Gab?: A Design Oriented So-
ciology of Young People’s Use of Mobiles.” Computer Supported Cooperative
Work (CSCW) 12 (3): 267–296. doi: 10.1023/A:1025091532662. (Cited
on pages 3, 9, 10, 41).

Thereska, E., O. Riva, R. Banks, S. E. Lindley, R. Harper, & W. Odom.
2013. Beyond File Systems: Understanding the Nature of Places Where People
Store �eir DataMSR-TR-2013-26. Microso� Research, February. http://
research.microsoft.com/apps/pubs/default.aspx?id=184802.
(Cited on page 59).

TodoMVC. 2015. “Readme.”March 15. Accessed July 28, 2015. https://github.
com/tastejs/todomvc/blob/0b2c672341/readme.md. (Cited on
page 69).

Toyama, K. 2013. “Re
ections on HCI for Development.” interactions 20 (6):
64–67. doi: 10.1145/2527298. (Cited on page 91).

Turkle, S. 2007. “Introduction: �e�ings�at Matter.” In Evocative Objects:
�ings We�ink With, edited by Turkle, S. Cambirdge, MA: MIT Press.
(Cited on page 26).

https://channel9.msdn.com/Blogs/Windows-Azure/Learn-how-Vesper-built-offline-sync-using-Azure-Mobile-Services-
https://channel9.msdn.com/Blogs/Windows-Azure/Learn-how-Vesper-built-offline-sync-using-Azure-Mobile-Services-
https://channel9.msdn.com/Blogs/Windows-Azure/Learn-how-Vesper-built-offline-sync-using-Azure-Mobile-Services-
http://dx.doi.org/10.1145/1500774.1500840
http://dx.doi.org/10.1145/1500774.1500840
https://play.google.com/store/apps/details?id=com.snapchat.android
https://play.google.com/store/apps/details?id=com.snapchat.android
http://dx.doi.org/10.1177/0162243910377624
http://dx.doi.org/10.1080/07370020903586696
http://dx.doi.org/10.1080/07370020903586696
http://dx.doi.org/10.1080/01972240290075066
http://dx.doi.org/10.1080/00071310220133287
http://www.rackspace.com/knowledge_center/whitepaper/understanding-the-cloud-computing-stack-saas-paas-iaas
http://www.rackspace.com/knowledge_center/whitepaper/understanding-the-cloud-computing-stack-saas-paas-iaas
http://www.rackspace.com/knowledge_center/whitepaper/understanding-the-cloud-computing-stack-saas-paas-iaas
http://dx.doi.org/10.1023/A:1025091532662
http://research.microsoft.com/apps/pubs/default.aspx?id=184802
http://research.microsoft.com/apps/pubs/default.aspx?id=184802
https://github.com/tastejs/todomvc/blob/0b2c672341/readme.md
https://github.com/tastejs/todomvc/blob/0b2c672341/readme.md
http://dx.doi.org/10.1145/2527298

106

Turner, V. 1967.�e Forest of Symbols: Aspects of Ndembu Ritual. 12. paperback
printing. Cornell paperbacks 101. OCLC: 255259788. Ithaca, NY: Cornell
Univ. Press. (Cited on page 76).

Van House, N. A. 2009. “Collocated Photo Sharing, Story-Telling, and the
Performance of Self.” International Journal of Human-Computer Studies,
Collocated Social Practices Surrounding Photos, 67 (12): 1073–1086. doi:
10.1016/j.ijhcs.2009.09.003. (Cited on pages 10, 34, 35, 38).

Walton, M. 2014. “Pavement Internet: Mobile Media Economies and Ecologies
for Young People in South Africa.” In�e Routledge Companion to Mobile
Media, edited by Goggin, G. & Hjorth, L. London, UK: Routledge. (Cited
on pages 3, 87).

Walton, M., S. Hassreiter, G. Marsden, & S. Allen. 2012. “Degrees of
Sharing: Proximate Media Sharing and Messaging by Young People in
Khayelitsha.” In Proceedings of the 14th International Conference on Human-
Computer Interaction with Mobile Devices and Services: MobileHCI ’12, 403–
412. New York, NY, USA: ACM. doi: 10.1145/2371574.2371636. (Cited
on pages 41–43, 96).

Wharton, J. 2016. “Exploring RxJava 2 for Android.” In GOTO Copenhagen
2016. http://academy.realm.io/posts/gotocph-jake-wharton-
exploring-rxjava2-android/. (Cited on page 91).

Whitechapel, A. 2013.Windows Phone 8 Development Internals. In collabora-
tion with McKenna, S. Sebastopol, California: O’Reilly Media, Inc. (Cited
on pages 10, 11, 14).

WindowsDevCenter. 2016. “App andUser Data.” AccessedMay 14. https://
msdn.microsoft.com/en-us/library/windows/apps/jj553522.

aspx. (Cited on page 55).

Zhao, X., & S. E. Lindley. 2014. “Curation�rough Use: Understanding the
Personal Value of Social Media.” In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems: CHI ’14, 2431–2440. New York,
NY, USA: ACM. doi: 10.1145/2556288.2557291. (Cited on pages 60,
61).

Zimmerman, J., J. Forlizzi, & S. Evenson. 2007. “Research�rough Design
As a Method for Interaction Design Research in HCI.” In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems: CHI ’07,
493–502. New York, NY, USA: ACM. doi: 10.1145/1240624.1240704.
(Cited on page 39).

Zimmerman, J., E. Stolterman, & J. Forlizzi. 2010. “An Analysis and Cri-
tique of Research�rough Design: Towards a Formalization of a Research
Approach.” In Proceedings of the 8th ACM Conference on Designing Interac-
tive Systems: DIS ’10, 310–319. New York, NY, USA: ACM. doi: 10.1145/
1858171.1858228. (Cited on pages 2, 3, 5, 28, 39, 49, 95).

http://dx.doi.org/10.1016/j.ijhcs.2009.09.003
http://dx.doi.org/10.1145/2371574.2371636
http://academy.realm.io/posts/gotocph-jake-wharton-exploring-rxjava2-android/
http://academy.realm.io/posts/gotocph-jake-wharton-exploring-rxjava2-android/
https://msdn.microsoft.com/en-us/library/windows/apps/jj553522.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/jj553522.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/jj553522.aspx
http://dx.doi.org/10.1145/2556288.2557291
http://dx.doi.org/10.1145/1240624.1240704
http://dx.doi.org/10.1145/1858171.1858228
http://dx.doi.org/10.1145/1858171.1858228

	1 Introduction
	1.1 The argument outlined

	2 Engineering to gift
	2.1 Introduction
	2.2 Motivation
	2.2.1 Gifting as an interface question
	2.2.2 Gifting as a practice

	2.3 Formalising to gift
	2.4 Does Windows Phone 8 Support Gifting?
	2.4.1 The objects one encounters on the phone
	2.4.2 Sketching a Windows Phone App
	2.4.3 Encountering Photos using the PhotoChooserTask
	2.4.4 Encountering Photos using the share picker invocation point
	2.4.5 The materiality of a photo on Windows Phone 8

	2.5 Switching to Android
	2.5.1 Prototyping a Gifting App on Android

	2.6 Discussion & Reflections
	2.6.1 Changing architecture
	2.6.2 Workarounds
	2.6.3 Influence of the Cloud
	2.6.4 Files are insufficient

	2.7 Conclusion

	3 Research Agenda
	3.1 Introduction
	3.2 Share: Solution or Problem?
	3.3 What constitutes an answer?
	3.3.1 Implicating mobile system architecture
	3.3.2 Implicating the app model & data store
	3.3.3 Implicating the cloud
	3.3.4 Implicating data exchange protocols & access points

	3.4 A way forward
	3.4.1 Research through Design Process

	3.5 What is a File & what should it be?
	3.5.1 Icons & Grammars of Action

	3.6 Outlook – Moving to the mobile and networked computing landscape of today

	4 Collecting & Showing
	4.1 Introduction
	4.2 Sensitising
	4.2.1 Understanding co-present practices
	4.2.2 Understanding boundaries of people & time
	4.2.3 Understanding identity
	4.2.4 Understanding context
	4.2.5 Understanding photographic (co-present) practices

	4.3 Critiquing
	4.3.1 Mobile Digital Stories
	4.3.2 Mobiphos
	4.3.3 Pass-them-around
	4.3.4 Proxemic Interactions

	4.4 Integrating & Generating
	4.5 Exploring Share Face2Face
	4.5.1 Sketching Share Face2Face

	4.6 Interrogating the sharing interface
	4.6.1 Re-considering existing practices

	4.7 Designing & implementing a co-present photo gallery
	4.7.1 Mimicking the built-in gallery
	4.7.2 Extending the built-in gallery app
	4.7.3 Designing the co-present gallery
	4.7.4 Implementing the co-present Gallery

	4.8 Discussion & Outlook
	4.9 Looking back & moving forward

	5 Interlude
	5.1 Introduction
	5.2 Examining the Windows Phone 8.1 File Manager
	5.3 The battle in the sandbox
	5.3.1 Examining the share contract & file picker
	5.3.2 Discussion

	5.4 Taking back control
	5.4.1 The MyStuff file manager & datastore

	5.5 Conclusion

	6 Interfacing with the Cloud
	6.1 Introduction
	6.1.1 From Files to Possessions
	6.1.2 Outlining a way forward

	6.2 Contemporary Cloud Architectures
	6.2.1 Demystifying the Cloud
	6.2.2 Choosing a Cloud Service Model
	6.2.3 Choosing a PaaS Cloud Vendor
	6.2.4 Getting Started with the Azure Mobile Service PaaS
	6.2.5 Diving Deeper into Azure Mobile Services
	6.2.6 Tying the components together

	6.3 Architecting To Give
	6.3.1 Accounts & Contacts
	6.3.2 Uploading to, storing on, and downloading from Azure Blog Storage

	6.4 Extending file abstractions to incorporate metadata
	6.5 Implementing the expanded My Stuff prototype
	6.5.1 Implementing expanded file abstractions

	6.6 Conclusion

	7 Relocating & Rearchitecting
	7.1 Introduction
	7.2 Background
	7.3 Findings
	7.3.1 Latency
	7.3.2 Intermediaries
	7.3.3 Discussion

	7.4 Rearchitecting
	7.4.1 Ensuring protocol adherence
	7.4.2 Dealing with Latency & Asynchronicity

	7.5 Conclusion

	8 Conclusion
	8.1 Summary of Contributions
	8.2 Limitations
	8.3 Future Work

